Skip to main content

Some Applications of Quasi-Monte Carlo Methods in Statistics

  • Conference paper
Monte Carlo and Quasi-Monte Carlo Methods 2000

Abstract

Most applications of quasi-Monte Carlo methods in numerical analysis are in evaluating high dimensional integrals. However, many problems in statistics, that are not obvious integration problems, need low-discrepancy sequences/sets that can be generated by Quasi-Monte Carlo methods. In this paper we review some applications of low-discrepancy sequences/sets in statistical inference, Bayesian statistics, geometric probability and experimental design. Furthermore, measures of uniformity can be regarded as an important criterion in statistical experimental design. We also review various applications of uniformity in factorial design, block design and others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bates, R.A., R.J. Buck, E. Riccomagno, and H.P. Wynn (1996). Experimental design and observation for large systems. J. R. Statist. Soc. B, 58, 77–94.

    MathSciNet  MATH  Google Scholar 

  2. Booth, K. H. V. and D.R. Cox (1962). Some systematic supersaturated designs. Technometrics, 4, 489–495.

    MathSciNet  MATH  Google Scholar 

  3. Box, G.E.P., E.P. Hunter and J.S. Hunter (1978). Statistics for Experimenters. Wiley, New York.

    MATH  Google Scholar 

  4. Bundschuh, P. and Y.C. Zhu (1993). A method for exact calculation of the discrepancy of low-dimensional finite point sets (I), Abhandlungen aus dem Math. Seminar der Univ. Hamburg, 63, 115–133.

    MathSciNet  MATH  Google Scholar 

  5. Chen, J. and D.K.J. Lin (1991). On the identity relationship of 2k-p designs, J. Statist. Plan. Inf., 28, 95–98.

    Google Scholar 

  6. Cheng, C.-S. and R. Mukerjee (1998). Regular fractional factorial designs with minimum aberration and maximum estimation capacity. Ann Statist., 26, 2289–2300.

    MathSciNet  MATH  Google Scholar 

  7. Clark, J.B. and A.M. Dean (2001). Equivalence of fractional factorial designs. Statistica Sinica, 11, 537–547.

    MathSciNet  MATH  Google Scholar 

  8. D'Agostino, R.B. and M.A. Stephens (1986). Goodness-of-fit Techniques. Marcel Dekker, Inc., New York.

    MATH  Google Scholar 

  9. Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer-Verlag, New York.

    MATH  Google Scholar 

  10. Dey, A. and R. Mukerjee (1999). Fractional Factorial Plans. John Wiley, New York.

    MATH  Google Scholar 

  11. Draper, N.R. and T.J. Mitchell (1968). Construction of the set of 256-run designs of resolution ≥ 5 and set of even 512-run designs of resolution ≥ 6 with special reference to the unique saturated designs. Annals of Math. Statistics, 39, 246–255.

    MathSciNet  MATH  Google Scholar 

  12. Draper, N.R. and T.J. Mitchell (1970). Constructions of a set of 512-run designs of resolution ≥ 5 and a set of even 1024-run designs of resolution ≥ 6. Annals of Math. Statistics, 41, 876–887.

    MathSciNet  MATH  Google Scholar 

  13. Fang, K.T. (1980). The uniform design: application of numb er-theoretic methods in experimental design. Acta Math. Appl. Sinica, 3, 363–372.

    MathSciNet  MATH  Google Scholar 

  14. Fang, K.T., P.M. Bentler and K.H. Yuan (1994). Applications of numbertheoretic methods to quantizers of elliptically contoured distributions, in Multivariate Analysis and Its Applications, IMS Lecture Notes — Monograph Series, T.W. Anderson et al eds., 211–225.

    Google Scholar 

  15. Fang, K.T. and G. Ge (2001). An efficient algorithm for the classification of Hadamard matrices. Technical Report MATH-298, Hong Kong Baptist University.

    Google Scholar 

  16. Fang, K. T. and F.J. Hickernell (1995). The uniform design and its applications. Bulletin of The International Statistical Institute, 50th Session, Book 1, 339–349, Beijing.

    Google Scholar 

  17. Fang, K. T., F.J. Hickernell and P. Winker (1996). Some global optimization algorithms in statistics, in Lecture Notes in Operations Research, D.Z. Du, et al eds., World Publishing Corporation, 14–24.

    Google Scholar 

  18. Fang, K. T. and J.K. Li (1995). Some new results on uniform design. Chinese Science Bulletin, 40, 268–272.

    MATH  Google Scholar 

  19. Fang, K. T. and R.Z. Li (1997). Some methods for generating both an NT-net and the uniform distribution on a Stiefel manifold and their applications. Comput. Statist, and Data Anal., 24, 29–46.

    MathSciNet  MATH  Google Scholar 

  20. Fang, K.T. and W. Li (1995). A global optimum algorithm on two factor uniform design. Technical Report MATH-095, Hong Kong Baptist University.

    Google Scholar 

  21. Fang, K. T. and J.J. Liang (1999). Tests of spherical and elliptical symmetry. Encyclopedia of Statistical Sciences, Update Vol. 3, Wiley, New York, 686–691.

    Google Scholar 

  22. Fang, K.T. and D. K.J. Lin (2001). Uniform experimental design and Its applications in industry, in Handbook in Statistics: Statistics in Industry, to appear.

    Google Scholar 

  23. Fang, K.T., D.K.J. Lin and M.Q. Liu (2000). Optimal mixed-level supersaturated design and computer experiments. Technical Report MATH-286, Hong Kong Baptist University.

    Google Scholar 

  24. Fang, K.T., D.K.J. Lin, P. Winker and Y. Zhang (2000). Uniform design: Theory and Applications. Technometrics, 42, 237–248.

    MathSciNet  MATH  Google Scholar 

  25. Fang, K.T., C.X. Ma and P. Winker (2001). Centered L 2-discrepancy of random sampling and Latin hypercube design, and construction of uniform designs. Math. Computation, to appear.

    Google Scholar 

  26. Fang, K.T. and R. Mukerjee (2000). A connection between uniformity and aberration in regular fractions of two-level factorials. Biometrika, 87, 193–198.

    MathSciNet  MATH  Google Scholar 

  27. Fang, K.T., W.C. Shiu and J.X. Pan (1999). Uniform designs based on Latin squares. Statistica Sinica, 9, 905–912.

    MathSciNet  MATH  Google Scholar 

  28. Fang, K. T. and Y. Wang (1990). A sequential algorithm for optimization and its applications to regression analysis, in Lecture Note in Contemporary Mathematics, L. Yang and Y. Wang eds., 17–28, Science Press, Beijing.

    Google Scholar 

  29. Fang, K. T. and Y. Wang (1991). A sequential algorithm for solving a system of nonlinear equations. J. Computational Math., 9, 9–16.

    MathSciNet  MATH  Google Scholar 

  30. Fang, K. T. and Y. Wang (1994). Number-Theoretic Methods in Statistics. Chapman & Hall, London.

    MATH  Google Scholar 

  31. Fang, K.T., Y. Wang and P.M. Bentler (1994). Some applications of numbertheoretic methods in statistics. Statistical Science, 9, 416–428.

    MathSciNet  MATH  Google Scholar 

  32. Fang, K.T. and G. Wei (1993). The distribution of a class the first hitting time. Acta Math. Appl. Sinica, 15, 460–467.

    Google Scholar 

  33. Fang, K.T. and Z.H. Yang (1999). On uniform design of experiments with restricted mixtures and generation of uniform distribution on some domains. Statist & Prob. Letters, 46, 113–120.

    MathSciNet  Google Scholar 

  34. Fang, K.T., Z.H. Yang and S. Kotz (2001). Generation of multivariate distributions by vertical density representation. Statistics, 35, 281–293.

    MathSciNet  MATH  Google Scholar 

  35. Fang, K.T. and K.H. Yuan (1990). A unified approach to maximum likelihood estimation. Chinese J. Appl. Prob. Stat., 7, 412–418.

    Google Scholar 

  36. Fang, K.T. and J.T. Zhang (1993). A new algorithm for calculation of estimates of parameters of nonlinear regression modeling. Acta Math. Appl. Sinica, 16, 366–377.

    MATH  Google Scholar 

  37. Fang, K.T. and Z.K. Zheng (1999). A two-stage algorithm of numerical evaluation of integrals in number-theoretic methods. J. Comp. Math., 17, 285–292.

    MathSciNet  MATH  Google Scholar 

  38. Fries, A. and W.G. Hunter (1980). Minimum aberration 2k-p designs, Technometrics, 22, 601–608.

    MathSciNet  MATH  Google Scholar 

  39. Hickernell, F.J. (1998a). A generalized discrepancy and quadrature error bound. Math. Comp., 67, 299–322.

    MathSciNet  MATH  Google Scholar 

  40. Hickernell, F.J. (1998b). Lattice rules: how well do they measure up? in Random and Quasi-Random Point Sets, Eds P. Hellekalek and G. Larcher, Springer-Verlag, 106–166.

    Google Scholar 

  41. Hickernell, F.J. (1999a). Goodness-of-fit statistics, discrepancies and robust designs. Statist & Prob. Lett., 44, 73–78.

    MathSciNet  MATH  Google Scholar 

  42. Hickernell, F.J. (1999b). What affects the accuracy of quasi-Monte Carlo quadrature? in Monte Carlo and Quasi-Monte Carlo Methods, H. Niederreiter and J. Spanier, eds., Springer-Verlag, Berlin, 16–55.

    Google Scholar 

  43. Hickernell, F.J. and K.T. Fang (1993). Combining quasirandom search and Newton-like methods for nonlinear equations. Technical Report MATH-037, Hong Kong Baptist University.

    Google Scholar 

  44. Hickernell, F.J. and H.S. Hong (1997). Computing multivariate normal probabilities using rank-1 lattice sequences, in Proceedings of the Workshop on Scientific Computing, G.H. Golub, et al eds, Springer-Verlag, Singapore, 209–215.

    Google Scholar 

  45. Hickernell, F.J., H.S. Hong, P. L'Écuyer and C. Lemieux (2000). Extensible lattice sequences for quasi-Monte Carlo quadrature. SIAM J. Sci. Comput., 22, 1117–1138.

    MathSciNet  MATH  Google Scholar 

  46. Hickernell, F.J. and M.Q. Liu (2000). Uniform designs limit aliasing. Technical Report MATH-275, Hong Kong Baptist University.

    Google Scholar 

  47. Hickernell, F.J. and Y.X. Yuan (1997). A simple multi-start algorithm for global optimization. Oper. Res. Trans., 1, No 2, 1–11.

    Google Scholar 

  48. Ho, W.M. and Z.Q. Xue (2000). Applications of uniform design to computer experiments, J. Chinese Statistical Association, 38, 395–410.

    Google Scholar 

  49. Hong, H.S and F.J. Hickernell (2001). Implementing scrambled digital sequences, Technical Report MATH-299, Hong Kong Baptist University.

    Google Scholar 

  50. Hua, L.K. and Y. Wang (1981). Applications of Number Theory to Numerical Analysis. Springer and Science Press, Berlin and Beijing.

    MATH  Google Scholar 

  51. Johnson, M.E. (1987). Multivariate Statistical Simulation. Wiley, New York.

    MATH  Google Scholar 

  52. Kotz, S., K.T. Fang and J.J. Liang (1997). On multivariate vertical density representation and its application to random number generation. Statistics, 30, 163–180.

    MathSciNet  MATH  Google Scholar 

  53. Leung, Y.W. and Y.P. Wang (2000). Multiobjective programming using uniform design and genetic algorithm. IEEE Trans. System Man Cybernet, 30, 293–304.

    Google Scholar 

  54. Liang, J.J., K.T. Fang, F. J. Hickernell and R.Z. Li (2001). Testing multivariate uniformity and its applications. Math. Computation, 70, 337–355.

    MathSciNet  MATH  Google Scholar 

  55. Liang, Y.Z. and K.T. Fang (1996). Robust multivariate calibration algorithm based on least median squares and sequential number theoretic optimization method. Analyst Chemistry, 121, 1025–1029.

    Google Scholar 

  56. Lin, C., W. D. Wallis and L. Zhu (1992). Extended 4-profiles of Hadamard matrices. Ann. Discrete Math., 51, 175–180.

    MathSciNet  Google Scholar 

  57. Liu, M.Q. and F.J. Hickernell (2001). E(s 2)-optimality and minimum discrepancy in 2-level supersaturated designs. Statistics Sinica, in process.

    Google Scholar 

  58. Ma, C.X. (1997). Construction of uniform designs using symmetrical discrepancy. Application of Statistics and Management, 166–169.

    Google Scholar 

  59. Ma, C.X., K.T. Fang and D.K.J. Lin (2001a). On isomorphism of fractional factorial designs. J. Complexity, 17, 86–97.

    MathSciNet  MATH  Google Scholar 

  60. Ma, C.X., K.T. Fang and D.K.J. Lin (2001b). A note on uniformity and orthogonality. J. Statist. Plan. Inf., forthcoming.

    Google Scholar 

  61. Ma, C. X., K.T. Fang and E. Liski (2000). A new approach in constructing orthogonal and nearly orthogonal arrays. Metrika, 50, 255–268.

    MathSciNet  MATH  Google Scholar 

  62. McKay, M.D., R.J. Beckman and W.J. Conover (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21, 239–245.

    MathSciNet  MATH  Google Scholar 

  63. Niederreiter, H. (1988). Low discrepancy and low dispersion sequences. J. Number Theory, 30, 51–70.

    MathSciNet  MATH  Google Scholar 

  64. Niederreiter, H. (1992). Random Number Generation and Quasi-Monte Carlo Methods. SIAM CBMS-NSF Regional Conference Series in Applied Mathematics, Philadelphia.

    Google Scholar 

  65. Niederreiter, H. and K. McCurley (1979). Optimization of functions by quasirandom search methods. Computing, 22, 119–123.

    MathSciNet  MATH  Google Scholar 

  66. Niederreiter, H. and Peart, P. (1986), Localization of search in quasi-Monte Carlo methods for global optimization. SIAM J. Sci. Statist. Comput., 7, 660–664.

    MathSciNet  MATH  Google Scholar 

  67. Niederreiter, H. and C. Xing (1996). Quasirandom points and global function fields. in Finite Fields and Applications, S. Cohen and H. Niederreiter, eds., Cambridge University Press, 269–296.

    Google Scholar 

  68. Owen, A.B. (1995). Randomly permuted (t,m,s)-nets and (t, s)-sequences. in Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, H. Niederreiter and P.J.-S. Shius, eds, Springer-Verlag, New York, 288–317.

    Google Scholar 

  69. Shaw, J. E. H. (1988). A quasirandom approach to integration in Bayesian statistics. Ann. Statist., 16, 859–914.

    Google Scholar 

  70. Simpson, T.W., D.K.J. Lin and W. Chen (2001). Sampling strategies for computer experiments: design and analysis. International J. of Reliability, to appear.

    Google Scholar 

  71. Wang, Y. and K.T. Fang (1981). A note on uniform distribution and experimental design. KeXue TongBao, 26, 485–489.

    MathSciNet  MATH  Google Scholar 

  72. Wang, Y. and K.T. Fang (1990a). Number theoretic methods in applied statistics. Chinese Annals of Math. Ser. B, 11, 41–55.

    Google Scholar 

  73. Wang, Y. and K.T. Fang (1990b). Number theoretic methods in applied statistics (II). Chinese Annals of Math. Ser. B, 11, 384–394.

    MathSciNet  MATH  Google Scholar 

  74. Wang, Y. and K.T. Fang (1992). A sequential number-theoretic method for optimization and its applications in statistics. in The Development of Statistics: Recent Contributions from China, X.R. Chen et al eds, Longman, London, 139–156.

    Google Scholar 

  75. Weyl, H. (1916). Über die Gleichverteilung der Zahlen mod Eins. Math. Ann., 77, 313–352.

    MathSciNet  MATH  Google Scholar 

  76. Wiens, D.P. (1991). Designs for approximately linear regression: two optimality properties of uniform designs. Statist. & Prob. Letters., 12, 217–221.

    MathSciNet  MATH  Google Scholar 

  77. Winker, P. and K.T. Fang (1997). Application of Threshold accepting to the evaluation of the discrepancy of a set of points. SIAM Numer. Analysis, 34, 2038–2042.

    MathSciNet  Google Scholar 

  78. Winker, P. and K.T. Fang (1998). Optimal U-type design, in Monte Carlo and Quasi-Monte Carlo Methods 1996, H. Niederreiter, et al eds., Springer, 436–448.

    Google Scholar 

  79. Xie, M.Y. and K.T. Fang (2000). Admissibility and minimaxity of the uniform design in nonparametric regression model. J. Statist. Plan. Inference, 83, 101–111.

    MathSciNet  MATH  Google Scholar 

  80. Xu, Q.S., Y.Z. Liang and K.T. Fang (2000). The effects of different experimental designs on parameter estimation in the kinetics of a reversible chemical reaction. Chemometrics and Intelligent Laboratory Systems, 52, 155–166.

    Google Scholar 

  81. Yamada, S. and D.K.J. Lin (1999). Three-level supersaturated designs. Statist. Prob. Lett., 45, 31–39.

    MathSciNet  MATH  Google Scholar 

  82. Yue, R.X. and F.J. Hickernell (2001). The discrepancy of digital nets. Technical Report MATH-294, Hong Kong Baptist University.

    Google Scholar 

  83. Yue, R.X. (2001). A comparison of random and quasirandom points for nonparametric response surface design. Stat. & Prob. Letters, in process.

    Google Scholar 

  84. Zhang, L., Y.Z. Liang, R.Q. Yu and K.T. Fang (1997). Sequential numbertheoretic optimization (SNTO) method applied to chemical quantitative analysis. J. Chemometrics, 11, 267–281.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fang, KT. (2002). Some Applications of Quasi-Monte Carlo Methods in Statistics. In: Fang, KT., Niederreiter, H., Hickernell, F.J. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2000. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56046-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56046-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42718-6

  • Online ISBN: 978-3-642-56046-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics