Skip to main content

Global Ocean Carbon Cycle Modeling

  • Chapter
Ocean Biogeochemistry

Part of the book series: Global Change — The IGBP Series (closed) ((GLOBALCHANGE))

Abstract

One of the central objectives of the Joint Global Ocean Flux Study (JGOFS) is to use data from the extensive field effort to improve and evaluate numerical ocean carbon cycle models. Substantial improvements are required in the current suite of numerical models if we are to understand better the present ocean biogeochemical state, hindcast historical and paleoclimate variability, and predict potential future responses to anthropogenic perturbations. Significant progress has been made in this regard, and even greater strides are expected over the next decade as the synthesis of the JGOFS data sets are completed and disseminated to the scientific community. The goals of this chapter are to outline the role of modeling in ocean carbon cycle research, review the status of basin to global-scale modeling, and highlight major problems, challenges, and future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abbott MR (1995) Modeling the southern ocean ecosystem. GLOBEC Planning Report, 18, U.S. Global Ocean Ecosystem Dynamics (GLOBEC) Program, Berkeley, California, 63 pp

    Google Scholar 

  • Archer D (1995) Upper ocean physics as relevant to ecosystem dynamics: a tutorial. Ecol Appl 5:724–739

    Article  Google Scholar 

  • Archer D, Maier-Raimer E (1994) Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration. Nature 367:260–263

    Article  Google Scholar 

  • Archer D, Kheshgi H, Maier-Reimer E (1998) Dynamics of fossil fuel CO2 neutralization by marine CaCO3. Global Biogeochem Cy 12:259–276

    Article  Google Scholar 

  • Archer D, Eshel G, Winguth A, Broecker W (2000) Atmospheric CO2 sensitivity to the biological pump in the ocean. Global Biogeochem Cy 14:1219–1230

    Article  Google Scholar 

  • Armstrong RA (1994) Grazing limitation and nutrient limitation in marine ecosystems: steady state solutions of an ecosystem model with multiple food chains. Limnol Oceanogr 39:597–608

    Article  Google Scholar 

  • Armstrong RA (1999a) Stable model structures for representing biogeochemical diversity and size spectra in plankton communities. J Plankton Res 21:445–464

    Article  Google Scholar 

  • Armstrong RA (1999b) An optimization-based model of iron-light ammonium colimitation of nitrate uptake and phytoplankton growth. Limnol Oceanogr 44:1436–1446

    Article  Google Scholar 

  • Bacastow R, Maier-Reimer E (1990) Ocean-circulation model of the carbon cycle. Clim Dynam 4:95–125

    Article  Google Scholar 

  • Behrenfeld MJ, Falkowski PG (1997) Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol Oceanogr 42:1–20

    Article  Google Scholar 

  • Bissett WP, Meyers MB, Walsh JJ (1994) The effects of temporal variability of mixed layer depth on primary productivity around Bermuda. J Geophys Res 99:7539–7553

    Article  Google Scholar 

  • Bissett WP, Walsh JJ, Carder KL (1999) Carbon cyding in the upper waters of the Sargasso Sea: I. Numerical simulation of differential carbon and nitrogen fluxes. Deep-Sea Res Pt I 46:205–269

    Article  Google Scholar 

  • Bopp L, Monfray P, Aumont O, Dufresne J-L, Le Treut H, Madec G, Terray L, Orr JC (2001) Potential impact of climate change on marine export production. Global Biogeochem Cy 15:81–99

    Article  Google Scholar 

  • Boyd P, Doney S (2003) The impact of climate change and feedback process on the ocean carbon cycle. Chap. 7. Springer-Verlag, (this volume)

    Google Scholar 

  • Brewer PG, Goyet C, Dyrssen D (1989) Carbon dioxide transport by ocean currents at 25° N latitude in the Atlantic Ocean. Science 246:477–479

    Article  Google Scholar 

  • Broecker WS, Peng T-H (1992) Interhemispheric transport of carbon dioxide by ocean circulation. Nature 356:587–589

    Article  Google Scholar 

  • Broecker W, Lynch-Stieglitz J, Archer D, Hofmann M, Maier-Reimer E, Marchai O, Stocker T, Gruber N (1999) How strong is the Harvardton-Bear constraint? Global Biogeochem Cy 13:817–820

    Article  Google Scholar 

  • Capone DG, Zehr JP, Paerl HW, Bergman B, Carpenter EJ (1997) Trichodesmium: a globally significant cyanobacterium. Science 276:1221–1229

    Article  Google Scholar 

  • Carlson CA, Ducklow HW, Michaels AF (1994) Annual flux of dissolved organic carbon from the euphotic zone in the northwest Sargasso Sea. Nature 371:405–408

    Article  Google Scholar 

  • Case TJ (2000) An illustrated guide to theoretical ecology. Oxford University Press 4, 49 pp

    Google Scholar 

  • Chai F, Lindley ST, Barber RT (1996) Origin and maintenance of high nutrient condition in the equatorial Pacific. Deep-Sea Res Pt II 42:1031–1064

    Google Scholar 

  • Christian JR, Verschell MA, Murtugudde R, Busalacchi AJ, McClain CR (2001a) Biogeochemical modelling of the tropical Pacific Ocean. I. Seasonal and interannual variability. Deep-Sea Res Pt II 49:509–543

    Article  Google Scholar 

  • Christian JR, Verschell MA, Murtugudde R, Busalacchi AJ, McClain CR (2001b) Biogeochemical modelling of the tropical Pacific Ocean. II. Iron biogeochemistry. Deep-Sea Res Pt II 49:545–565

    Article  Google Scholar 

  • Conkright ME, Levitus S, O’Brien T, Boyer TP, Stephens C, Johnson D, Stathoplos L, Baranova O, Antonov J, Gelfeld R, Burney J, Rochester J, Forgy C (1998) World ocean atlas database 1998; CD-ROM data set documentation. National Océanographie Data Center, Silver Spring, MD

    Google Scholar 

  • Danabasoglu G, McWilliams JC, Gent PR (1994) The role of mesoscale tracer transports in the global ocean circulation. Science 264:1123–1126

    Article  Google Scholar 

  • Denman K, Hofmann E, Marchant H (1996) Marine biotic responses to environmental change and feedbacks to climate. In: Houghton JT, Meira LG Filho, Callander BA, Harris N, Kattenberg A, Maskell K (eds) Climate change 1995. IPCC, Cambridge University Press, pp 487–516

    Google Scholar 

  • Denman KL, Pena MA (1999) A coupled i-D biological/physical model of the northeast subarctic Pacific Ocean with iron limitation. Deep-Sea Res Pt II 46:2877–2908

    Article  Google Scholar 

  • Dickey T, Frye D, Jannasch H, Boyle E, Manov D, Sigurdson D, McNeil J, Stramska M, Michaels A, Nelson N, Siegel D, Chang G, Wu J, Knap A (1998) Initial results from the Bermuda testbed mooring program. Deep-Sea Res Pt I 45:771–794

    Article  Google Scholar 

  • Doney SC (1996) A synoptic atmospheric surface forcing data set and physical upper ocean model for the U.S. JGOFS Bermuda Atlantic Time-Series Study (BATS) site. J Geophys Res 101: 25615–25634

    Article  Google Scholar 

  • Doney SC (1999) Major challenges confronting marine biogeochemical modeling. Global Biogeochem Cy 13:705–714

    Article  Google Scholar 

  • Doney SC, Hecht MW (2002) Antarctic bottom water formation and deep water chlorofluorocarbon distributions in a global ocean climate model J Phys Oceanogr 32:1642–1666

    Article  Google Scholar 

  • Doney SC, Sarmiento JL (eds) (1999) Synthesis and modeling project; ocean biogeochemical response to climate change. U.S. JGOFS Planning Report 22, U.S. JGOFS Planning Office, Woods Hole, MA, 105 pp

    Google Scholar 

  • Doney SC, Glover DM, Najjar RG (1996) A new coupled, one-dimensional biological-physical model for the upper ocean: applications to the JGOFS Bermuda Atlantic Time Series (BATS) site. Deep-Sea Res Pt II 43:591–624

    Article  Google Scholar 

  • Doney SC, Large WG, Bryan FO (1998) Surface ocean fluxes and water-mass transformation rates in the coupled NCAR Climate System Model. J Climate 11:1422–1443

    Article  Google Scholar 

  • Doval M, Hansell DA (2000) Organic carbon and apparent oxygen utilization in the western South Pacific and central Indian Oceans. Mar Chem 68:249–264

    Article  Google Scholar 

  • Dutay J-C, Bullister JL, Doney SC, Orr JC, Najjar R, Caldeira K, Champin J-M, Drange H, Follows M, Gao Y, Gruber N, Hecht MW, Ishida A, Joos F, Lindsay K, Madec G, Maier-Reimer E, Marshall JC, Matear RJ, Monfray P, Plattner G-K, Sarmiento J, Schhtzer R, Slater R, Totterdell IJ, Weirig M-F, Yamanaka Y, Yool A (2001) Evaluation of ocean model ventilation with CFC-11: comparison of 13 global ocean models. Ocean Modelling 4: 89–120

    Article  Google Scholar 

  • Dutkiewicz S, Follows M, Marshall J, Gregg WW (2001) Interannual variability of phytoplankton abundances in the North Atlantic. Deep-Sea Res Pt II 48:2323–2344

    Article  Google Scholar 

  • England MH (1995) Using chlorofluorocarbons to assess ocean climate models. Geophys Res Lett 22:3051–3054

    Article  Google Scholar 

  • England MH, Maier-Reimer E (2001) Using chemical tracers to assess ocean models. Rev Geophys 39:29–70

    Article  Google Scholar 

  • Evans GT, Fasham MJR (ed) (1993) Towards a model of ocean biogeochemical processes. Springer-Verlag, New York

    Google Scholar 

  • Evans GT, Garçon VC (ed) (1997) One-dimensional models of water column biogeochemistry. JGOFS Report 23/97, 85 pp., JGOFS, Bergen, Norway

    Google Scholar 

  • Evans GT, Parslow JS (1985) A model of annual plankton cycles. Biolo Oceanogr 3:327–347

    Google Scholar 

  • Falkowski PG, Biscaye PE, Sancetta C (1994) The lateral flux of biogenic particles from the eastern North American continental margin to the North Atlantic Ocean. Deep-Sea Res Pt II 41: 583–601

    Article  Google Scholar 

  • Fasham MJR (1993) Modelling the marine biota. In: Heimann M (ed) The global carbon cycle. Springer-Verlag, Heidelberg, pp 457–504

    Chapter  Google Scholar 

  • Fasham MJR (1995) Variations in the seasonal cycle of biological production in subarctic oceans: a model sensitivity analysis. Deep-Sea Res Pt I 42:1111–1149

    Article  Google Scholar 

  • Fasham MJR, Evans GT (1995) The use of optimisation techniques to model marine ecosystem dynamics at the JGOFS station at 47° N and 20° W. Philos T Roy Soc B 348:206–209

    Article  Google Scholar 

  • Fasham MJR, Ducklow HW, McKelvie SM (1990) A nitrogen-based model of plankton dynamics in the oceanic mixed layer. J Mar Res 48:591–639

    Google Scholar 

  • Fennel K, Losch M, Schröter J, Wenzel M (2001) Testing a marine ecosystem model: sensitivity analysis and parameter optimization. J Marine Syst 28:45–63

    Article  Google Scholar 

  • Fennel K, Spitz YH, Letelier RM, Abbott MR, Karl DM (2002) A deterministic model for N2-fixation at the HOT site in the subtropical North Pacific. Deep-Sea Res II 49:149–174

    Article  Google Scholar 

  • Francis RC, Hare SR (1994) Decadal-scale regime shifts in the large marine ecosystems of the North-east Pacific: a case for historical science. Fish Oceanogr 3:279–291

    Article  Google Scholar 

  • Frost BW (1987) Grazing control of phytoplankton stock in the subarctic Pacific: a model assessing the role of mesozooplankton, particularly the large calanoid copepods, Neocalanus spp. Mar Ecol Prog Ser 39:49–68

    Article  Google Scholar 

  • Fung IY, Meyn SK, Tegen I, Doney SC, John JG, Bishop JKB (2000) Iron supply and demand in the upper ocean. Global Biogeochem Cy 14:281–295

    Article  Google Scholar 

  • Garçon VC, Oschlies A, Doney SC, McGillicuddy D, Waniek J (2001) The role of mesoscale variability on plankton dynamics. Deep-Sea Res Pt II 48:2199–2226

    Article  Google Scholar 

  • Gelder RJ, Maclntyre HL, Kana TM (1996) A dynamic model of photoadaptation in phytoplankton. Limnol Oceanogr 41:1–15

    Article  Google Scholar 

  • Gelder RJ, Maclntyre HL, Kana TM (1998) A dynamic regulatory model of phytoplankton acclimation to light, nutrients, and temperature. Limnol Oceanogr 43:679–694

    Article  Google Scholar 

  • Gent PR, McWilliams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20:150–155

    Article  Google Scholar 

  • Gent PR, Bryan FO, Danabasoglu G, Doney SC, Holland WR, Large WG, McWilliams JC (1998) The NCAR Climate System Model global ocean component. J Climate 11:1287–1306

    Article  Google Scholar 

  • Giering R, Kaminski T (1998) Recipes for adjoint code construction. Acm t math software 24:437–474

    Article  Google Scholar 

  • Gnanadesikan A (1999) A global model of silicon cycling: sensitivity to eddy parameterization and dissolution. Global Biogeochem Cy 13:199–220

    Article  Google Scholar 

  • Gnanadesikan A, Toggweiler JR (1999) Constraints placed by silicon cycling on vertical exchange in general circulation models. Geophys Res Lett 26:1865–1868

    Article  Google Scholar 

  • Gnanadesikan A, Slater R, Gruber N, Sarmiento JL (2001) Oceanic vertical exchange and new production: a comparison between models and observations. Deep-Sea Res Pt II 49:363–401

    Article  Google Scholar 

  • Gregg WW (2002) Tracking the SeaWiFS record with a coupled physical/biogeochemical/radiative model of the global oceans. Deep-Sea Res Pt II 49:81–105

    Google Scholar 

  • Griffes SM, Boning C, Bryan FO, Chassignet EP, Gerdes R, Hasumi H, Hirst A, TreguerA-M, Webb D (2000) Developments in ocean climate modelling, vol. 2. pp 123–192

    Google Scholar 

  • Gruber N (1998) Anthropogenic CO2 in the Atlantic Ocean. Global Biogeochem Cy 12:165–191

    Article  Google Scholar 

  • Gruber N, Sarmiento JL (1997) Global patterns of marine nitrogen fixation and denitrification. Global Biogeochem Cy 11: 235–266

    Article  Google Scholar 

  • Gruber N, Sarmiento JL, Stocker TF (1996) An improved method for detecting anthropogenic CO2 in the oceans. Global Biogeochem Cy 10:809–837

    Article  Google Scholar 

  • Gruber N, Gloor M, Fan SM, Sarmiento JL (2001) Air-sea flux of oxygen estimated from bulk data: implications for the marine and atmospheric oxygen cycle. Global Biogeochem Cy 15(4): 783–803

    Article  Google Scholar 

  • Haidvogel DB, Beckmann A (1999) Numerical ocean circulation modeling. Imperial College Press, London, 318 pp

    Google Scholar 

  • Haidvogel DB, Curchitser E, Iskandarani M, Hughes R, Taylor M (1997) Global modeling of the ocean and atmosphere using the spectral element method. Atmos Ocean 35:505–531

    Article  Google Scholar 

  • Hansell DA, Carlson CA (1998) Net community production of dissolved organic carbon. Global Biogeochem Cy 12:443–453

    Article  Google Scholar 

  • Harris RP (1994) Zooplankton grazing on the coccolithophore Emiliania huxleyi and its role in inorganic carbon flux. Mar Biol 119:431–439

    Article  Google Scholar 

  • Harrison DE (1996) Vertical velocity variability in the tropical Pacific: a circulation model perspective for JGOFS. Deep-Sea Res Pt II 43:687–705

    Article  Google Scholar 

  • Hecht MW, Wingate BA, Kassis P (2000) A better, more discriminating test problem for ocean tracer transport. Ocean Modelling 2:1–15

    Article  Google Scholar 

  • Heinze C, Maier-Reimer E, Schlosser P (1998) Transient tracers in a global OGCM: source functions and simulated distributions. J Geophys Res 103:15903–15922

    Article  Google Scholar 

  • Heinze C, Maier-Reimer E, Winguth AME, Archer D (1999) A global oceanic sediment model for long-term climate studies. Global Biogeochem Cy 13:221–250

    Article  Google Scholar 

  • Holfort J, Johnson KM, Wallace DWR (1998) Meridional transport of dissolved inorganic carbon in the South Atlantic Ocean. Global Biogeochem Cy 12:479–499

    Article  Google Scholar 

  • Holligan PM, Fernandez E, Aiken J, Balch WM, Boyd P, Burkill PH, Finch M, Groom SB, Malin O, Muller K, Purdie DA, Robinson C, Trees CC, Turner SM, van del Wal P (1993) A biogeochemical study of the coccolithophore Emiliania huxleyi in the North Atlantic. Global Biogeochem Cy 7:879–900

    Article  Google Scholar 

  • Hood RR, Bates NR, Olson DB (2001) Modeling the seasonal to interannual biogeochemical and N2 fixation cycles at BATS. Deep-Sea Res Pt II 48:1609–1648

    Article  Google Scholar 

  • Hurtt GC, Armstrong RA (1996) A pelagic ecosystem model calibrated with BATS data. Deep-Sea Res Pt II 43:653–683

    Article  Google Scholar 

  • Ishizaka J (1990) Coupling of Coastal Zone Color Scanner data to a physical-biological model of the Southeastern U.S. continental shelf ecosystem, 3, nutrient and phytoplankton fluxes and CZCS data assimilation. J Geophys Res 95:20201–20212

    Article  Google Scholar 

  • Joos F, Siegenthaler U, Sarmiento JL (1991) Possible effects of iron fertilization in the Southern Ocean on atmospheric CO2 concentration. Global Biogeochem Cy 5:135–150

    Article  Google Scholar 

  • Joos F, Plattner O-K, Schmittner A (1999) Global warming and marine carbon cycle feedbacks on future atmospheric CO2. Science 284:464–467

    Article  Google Scholar 

  • Karl DM (1999) A sea of change: biogeochemical variability in the North Pacific subtropical gyre. Ecosystems 2:181–214

    Article  Google Scholar 

  • Karl DM, Letelier R, Hebel D, Tupas L, Dore J, Christian J, Winn C (1995) Ecosystem changes in the North Pacific subtropical gyre attributed to the 1991–1992 El Nino. Nature 378:230–234

    Article  Google Scholar 

  • Karl D, Letelier R, Tupas L, Dore J, Christian J, Hebel D (1997) The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. Nature 388:533–538

    Article  Google Scholar 

  • Kasibhatla P, Heimann M, Rayner P, Mahowald N, Prinn RG, Hartley DE (ed) (2000) Inverse methods in global biogeochemical cycles. AGU Geophysical. Monograph Series, American Geophysical Union, Washington D.C., 324 pp

    Google Scholar 

  • Keeling RF, Piper SC, Heimann M (1996) Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration. Nature 381:218–221

    Article  Google Scholar 

  • Kleypas JA, Doney SC (2001) Nutrients, chlorophyll, primary production and related biogeochemical properties in the ocean mixed layer — a compilation of data collected at nine JGOFS sites. NCAR Technical Report, NCAR/TN-447-hSTR, 53 pp

    Google Scholar 

  • Kleypas JA, Buddemeier RW, Archer D, Gattuso J-P, Langdon C, Opdyke BN (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–120

    Article  Google Scholar 

  • Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev Geophys 32:363–403

    Article  Google Scholar 

  • Large WG, Danabasoglu G, Doney SC, McWilliams JC (1997) Sensitivity to surface forcing and boundary layer mixing in a global ocean model: annual-mean climatology. J Phys Oceanogr 27:2418–2447

    Article  Google Scholar 

  • Laws EA, Falkowski PG, Smith WO Jr., Ducklow H, McCarthy JJ (2000) Temperature effects on export production in the open ocean. Global Biogeochem Cy 14:1231–1246

    Article  Google Scholar 

  • Le Quéré C, Orr JC, Monfray P, Aumont O, Madec G (2000) Interannual variability of the oceanic sink of CO2 from 1979 though 1997. Global Biogeochem Cy 14:1247–1265

    Article  Google Scholar 

  • Leonard CL, McClain CR, Murtugudee R, Hofmann EE, Harding JLW (1999) An iron-based ecosystem model of the central equatorial Pacific. J Geophys Res 104:1325–134

    Article  Google Scholar 

  • Letelier RM, Abbott MR (1996) An analysis of chlorophyll fluorescence for the Moderate Resolution Imaging Spectrometer (MODIS). Remote Sens Environ 58:215–223

    Article  Google Scholar 

  • Letelier R, Karl D (1996) Role of Trichodesmium spp. in the productivity of the subtropical North Pacific Ocean. Mar Ecol Prog Ser 133:263–273

    Article  Google Scholar 

  • Letelier R, Karl D (1998) Trichodesmium spp. physiology and nutrient fluxes in the North Pacific subtropical gyre. Aquat Microb Ecol 15:265–276

    Article  Google Scholar 

  • Levitus S, Conkright ME, Reid JL, Najjar RG, Mantilla A (1993) Distribution of nitrate, phosphate and silicate in the world oceans. Prog Oceanogr 31:245–273

    Article  Google Scholar 

  • Levitus S, Burgett R, Boyer T (1994) World atlas 1994. NOAA Atlas NESDIS, U.S. Dept. of Commerce, Washington D.C.

    Google Scholar 

  • Levy M, Memery L, Madec G (1999) Combined effects of mesoscale processes and atmospheric high-frequency variability on the spring bloom in the MEDOC area. Deep-Sea Res Pt I 47:27–53

    Article  Google Scholar 

  • Lima I, Doney S, Bryan F, McGillicuddy D, Anderson L, Maltrud M (1999) Preliminary results from an eddy-resolving ecosystem model for the North Atlantic. EOS, Transactions AGU, 80(49), Ocean Sciences Meeting Supplement, OS28

    Google Scholar 

  • Lima ID, Olson DB, Doney SC (2002) Biological response to frontal dynamics and mesoscale variability in oligotrophic environments: a numerical modeling study. J Geophys Res (in press)

    Google Scholar 

  • Lipschultz F, Owens NJP (1996) An assessment of nitrogen fixation as a source of nitrogen to the North Atlantic. Biogeochemistry 35:261–274

    Article  Google Scholar 

  • Liu K-K, Atkinson L, Chen CTA, Gao S, Hall J, Macdonald RW, Talaue McManus L, Quiñones R (2000) Exploring continental margin carbon fluxes on a global scale. EOS, Transactions of the American Geophysical Union 81:641–644

    Article  Google Scholar 

  • Louanchi F, Najjar RG (2000) A global monthly mean climatology of phosphate, nitrate and silicate in the upper ocean: springsummer production and shallow remineralization. Global Biogeochem Cy 14: 957–977

    Article  Google Scholar 

  • Mahadevan A, Archer D (2000) Modeling the impact of fronts and mesoscale circulation on the nutrient supply and biogeochemistry of the upper ocean. J Geophys Res 105:1209–1225

    Article  Google Scholar 

  • Maier-Reimer E (1993) Geochemical cycles in an ocean general circulation model. Preindustrial tracer distributions. Global Biogeochem Cy 7:645–677

    Article  Google Scholar 

  • Maier-Reimer E, Hasselmann K (1987) Transport and storage in the ocean — an inorganic ocean-circulation carbon cycle model. Clim Dynam 2:63–90

    Article  Google Scholar 

  • Martin JH, Knauer GA, Karl DM, Broenkow WW (1987) VERTEX: carbon cycling in the northeast Pacific. Deep-Sea Res 34:267–285

    Article  Google Scholar 

  • Matear RJ (1995) Parameter optimization and analysis of ecosystem models using simulated annealing: a case study at Station P. J Mar Res 53:571–607

    Article  Google Scholar 

  • Matear RJ, Hirst AC (1999) Climate change feedback on the future oceanic CO2 uptake. Tellus B 51:722–733

    Article  Google Scholar 

  • Matear RJ, Holloway G (1995) Modeling the inorganic phosphorus cycle of the North Pacific using an adjoint data assimilation model to assess the role of dissolved organic phosphorus. Global Biogeochem Cy 9:101–119

    Article  Google Scholar 

  • May RM (1973) The stability and complexity of model ecosystems. Princeton University Press, Princeton New Jersey, 265 pp

    Google Scholar 

  • McClain CR, Arrigo K, Turk D (1996) Observations and simulations of physical and biological processes at ocean weather station P, 1951–1980. J Geophys Res 101:3697–3713

    Article  Google Scholar 

  • McClain CR, Cleave ML, Feldman GC, Gregg WW, Hooker SB, Kuring N (1998) Science quality SeaWiFS data for global biosphere research. Sea Technol 39:10–14

    Google Scholar 

  • McCreary JP, Kohler KH, Hood RR, Olson DB (1996) A four compartment ecosystem model of biological activity in the Arabian Sea. Prog Oceanogr 37:193–240

    Article  Google Scholar 

  • McGillicuddy DJ Jr., Robinson AR (1997) Eddy-induced nutrient supply and new production. Deep-Sea Res Pt I 44:1427–1450

    Article  Google Scholar 

  • McGillicuddy DJ Jr., Robinson AR, Siegel DA, Jannasch HW, Johnson R, Dickey TD, McNeil J, Michaels AF, Knap AH (1998) Influence of mesoscale eddies on new production in the Sargasso Sea. Nature 394:263–266

    Article  Google Scholar 

  • McGowan JA, Cayan DR, Dorman LM (1998) Climate-ocean variabihty and ecosystem response in the Northeast Pacific. Science 281:210–217

    Article  Google Scholar 

  • McWilliams JC (1996) Modeling the oceanic general circulation. Annu Rev Fluid Mech 28:215–248

    Article  Google Scholar 

  • Milliman JD (1993) Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state. Global Biogeochem Cy 7:927–957

    Article  Google Scholar 

  • Milliman JD, Troy PJ, Balch WM, Adams AK, Li YH, Mackenzie FT (1999) Biologically mediated dissolution of calcium carbonate above the chemical lysochne? Deep-Sea Res Pt I 46:1653–1669

    Article  Google Scholar 

  • Moloney CL, Field JG (1991) The size-based dynamics of plankton food webs. LA simulation model of carbon and nitrogen flows. J Plankton Res 13:1003–1038

    Article  Google Scholar 

  • Moore JK, Doney SC, Kleypas JA, Glover DM, Fung IY (2001a) An intermediate complexity marine ecosystem model for the global domain. Deep-Sea Res Pt II 49:403–462

    Article  Google Scholar 

  • Moore JK, Doney SC, Kleypas JA, Glover DM, Fung IY (2001b) Iron cycling and nutrient limitation patterns in surfce waters of the world ocean. Deep-Sea Res Pt II 49:463–507

    Article  Google Scholar 

  • Murnane RJ, Sarmiento JL, Le Quéré C (1999) Spatial distribution of air-sea CO2 fluxes and the interhemispheric transport of carbon by the oceans. Global Biogeochem Cy 13:287–305

    Article  Google Scholar 

  • Najjar RG, Sarmiento JL, Toggweiler JR (1992) Downward transport and fate of organic matter in the ocean: simulations with a general circulation model. Global Biogeochem Cy 6:45–76

    Article  Google Scholar 

  • Oeschger H, Siegenthaler U, Guglemann A (1975) A box-diffusion model to study the carbon dioxide exchange in nature. Tellus 27:168–192

    Article  Google Scholar 

  • Orr JC, Maier-Reimer E, Mikolajewicz U, Monfray P, Sarmiento JL, Toggweiler JR, Taylor NK, Palmer J, Gruber N, Sabine CL, Le Quéré C, Key RM, Boutin J (2001) Estimates of anthropogenic carbon uptake from four three-dimensional global ocean models. Global Biogeochem Cy 15:43–60

    Article  Google Scholar 

  • Oschlies A (2000) Equatorial nutrient trapping in biogeochemical ocean models: the role of advection numerics. Global Biogeochem Cy 14:655–667

    Article  Google Scholar 

  • Oschlies A, Garçon V (1998) Eddy-induced enhancement of primary production in a model of the North Atlantic Ocean. Nature 394:266–269

    Article  Google Scholar 

  • Oschlies A, Garçon V (1999) An eddy-permitting coupled physical-biological model of the North Atlantic-i. Sensitivity to advection numerics and mixed layer physics. Global Biogeochem Cy 13:135-160

    Article  Google Scholar 

  • Polovina JJ, Mitchum GT, Evans GT (1995) Decadal and basin-scale variation in mixed layer depth and the impact on biological production in the Central and North Pacific, 1960–88. Deep-Sea Res Pt I 42:1701–1716

    Article  Google Scholar 

  • Pondaven P, Ruiz-Pino D, Jeandel C (2000) Interannual variability of Si and N cycles at the time-series station KERFIX between 1990 and 1995 — a 1-D modelling study. Deep-Sea Res Pt I 47:223–257

    Article  Google Scholar 

  • Rayner PJ, Enting IG, Francey RJ, Langenfelds R (1999) Reconstructing the recent carbon cycle from atmospheric CO2, d13C and O2/N2 observations. Tellus B 51:213–232

    Article  Google Scholar 

  • Reid PC, Edwards M, Hunt HG, Warner AJ (1998) Phytoplankton change in the North Atlantic. Nature 391:546

    Article  Google Scholar 

  • Riley GA (1946) Factors controlling phytoplankton populations on Georges Bank. J Mar Res 6:54–73

    Google Scholar 

  • Rintoul SR, Wunsch C (1991) Mass, heat, oxygen and nutrient fluxes and budgets in the North Atlantic Ocean. Deep-Sea Res 38 (suppl.) S355–S377

    Google Scholar 

  • Roberts M, Marshall D (1998) Do we require adiabatic dissipation schemes in eddy-resolving ocean models? J Phys Oceanogr 28:2050–2063

    Article  Google Scholar 

  • Robinson AR (1996) Physical processes, field estimation and an approach to interdisciplinary ocean modeling. Earth-Sci Rev 40:3–54

    Article  Google Scholar 

  • Robinson AR, McCarthy JJ, Rothschild BJ (2001) The sea: biological-physical interactions in the ocean. John Wiley & Sons, New York

    Google Scholar 

  • Ryabchenko VA, Gorchakov VA, Fasham MJR (1998) Seasonal dynamics and biological productivity in the Arabian Sea euphotic zone as simulated by a three-dimensinoal ecosystem model. Global Biogeochem Cy 12:501–530

    Article  Google Scholar 

  • Sabine CL, Key RM, Goyet C, Johnson KM, Millero FJ, Poisson A, Sarmiento JL, Wallace DWR, Winn CD (1999) Anthropogenic CO2 inventory in the Indian Ocean. Global Biogeochem Cy 13:179–198

    Article  Google Scholar 

  • Sarmiento JL, Sundquist ET (1992) Revised budget for the oceanic uptake of anthropogenic carbon dioxide. Nature 356:589–593

    Article  Google Scholar 

  • Sarmiento JL, Wofsy SC (1999) A U.S. Carbon Cycle Science Plan. (U.S. CCSP1999), U.S. Global Change Research Program, Washington DC, 69 pp

    Google Scholar 

  • Sarmiento JL, Orr JC, Siegenthaler U (1992) A perturbation simulation of CO2 uptake in an ocean general circulation model. J Geophys Res 97:3621–3646

    Article  Google Scholar 

  • Sarmiento JL, Slater RD, Fasham MJR (1993) A seasonal three-dimensional ecosystem model of nitrogen cycling in the North Atlantic euphotic zone. Global Biogeochem Cy 7:417–450

    Article  Google Scholar 

  • Sarmiento JL, Hughes TMC, Stouffer RJ, Manabe S (1998) Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393:245–249

    Article  Google Scholar 

  • Sarmiento JL, Monfray P, Maier-Reimer E, Aumont O, Murnane RJ, Orr JC (2000) Sea-air CO2 fluxes and carbon transport: a comparison of three ocean general circulation models. Global Biogeochem Cy 14:1267–1281

    Article  Google Scholar 

  • Schimel D, Enting IG, Heimann M, Wigley TML, Raynaud D, Alves D, Siegenthaler U (1995) CO2 and the carbon cycle. In: Houghton JT, Meira Filho LG, Bruce J, Lee H, Callander BA, Haites E, Harris N, Maskell K (eds) Climate change 1994. Intergovernmental Panel on Climate Change. Cambridge University Press, pp 39–71

    Google Scholar 

  • Schlitzer R (2000) Applying the adjoint method for global biogeochemical modeling. In: Kasibhatla P, et al. (eds) Inverse methods in global biogeochemical cycles. AGU Geophysical Monograph Series, American Geophysical Union, Washington D.C., pp 107–124

    Chapter  Google Scholar 

  • Siegenthaler U, Joos F (1992) Use of a simple model for studying oceanic tracer distributions and the global carbon cycle. Tellus B 44:186–207

    Article  Google Scholar 

  • Siegenthaler U, Oeschger H (1978) Predicting future atmospheric carbon dioxide levels. Science 199:388–395

    Article  Google Scholar 

  • Siegenthaler U, Sarmiento JL (1993) Atmospheric carbon dioxide and the ocean. Nature 365:119–125

    Article  Google Scholar 

  • Six KD, Maier-Reimer E (1996) Effects of plankton dynamics on seasonal carbon fluxes in an ocean general circulation model. Global Biogeochem Cy 10:559–583

    Article  Google Scholar 

  • Smith RD, Maltrud ME, Bryan FO, Hecht MW (2000) Numerical simulation of the North Atlantic at 1/10°. J Phys Oceanogr 30:1532–1561

    Article  Google Scholar 

  • Smith SV, Hollibaugh JT (1993) Coastal metabolism and the oceanic organic carbon balance. Rev Geophys 31:75–89

    Article  Google Scholar 

  • Spall MA, Holland WR (1991) A nested primitive equation model for oceanic applications. J Phys Oceanogr 21:205–220

    Article  Google Scholar 

  • Spall SA, Richards KJ (2000) A numerical model of mesoscale frontal instabilities and plankton dynamics. I. Model formulation and initial experiments. Deep-Sea Res Pt I 47:1261–1301

    Article  Google Scholar 

  • Spitz YH, Moisan JR, Abbott MR, Richman JG (1998) Data assimilation and a pelagic ecosystem model: parameterization using time series observations. J Marine Syst 16:51–68

    Article  Google Scholar 

  • Steele JH (1958) Plant production in the northern North Sea. Mar Res 7:1–36

    Google Scholar 

  • Steele JH (1974) The structure of marine ecosystems. Harvard University Press, Cambridge, MA, 128 pp

    Google Scholar 

  • Stephens BB, Keeling RF (2000) The influence of Antarctic sea ice on glacial/interglacial CO2 variations. Nature 404:171–174

    Article  Google Scholar 

  • Stocker TF, Broecker WS, Wright DG (1994) Carbon uptake experiments with a zonally-averaged global ocean circulation model. Tellus B 46:103–122

    Article  Google Scholar 

  • Sunda WG, Huntsman SA (1995) Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar Chem 50:189–206

    Article  Google Scholar 

  • Takahashi T, Feely RA, Weiss RF, Wanninkhof RH, Chipman DW, Sutherland SC, Takahashi TT (1997) Global air-sea flux of CO2, An estimate based on measurements of sea-air PCO2 difference. P Natl Acad Sci USA 94:8929–8299

    Google Scholar 

  • Takahashi T, Wanninkhof RH, Feely RA, Weiss RF, Chipman DW, Bates N, Olafson J, Sabine C, Sutherland SC (1999) Net air-sea CO2 flux over the global oceans: an improved estimate based on the sea-air pCO2 difference. In: Center for Global Environmental Research, National Institute for Environmental Studies (ed) Proceedings of the 2nd International Symposium on CO2 in the Oceans. Tsukuba, Japan, pp 9–15

    Google Scholar 

  • Tegen I, Fung I (1995) Contribution to the atmospheric mineral aerosol load from land surface modification. J Geophys Res 100:18, 707–18, 726

    Article  Google Scholar 

  • Toggweiler JR (1999) Variation of atmospheric CO2 by ventilation of the ocean’s deepest water. Paleoceanography 14:571–588

    Article  Google Scholar 

  • Toggweiler JR, Dixon K, Bryan K (1989a) Simulations of radiocarbon in a coarse-resolution world ocean model; 1. Steady state pre-bomb distribution. J Geophys Res 94:8217–8242

    Article  Google Scholar 

  • Toggweiler JR, Dixon K, Bryan K (1989b) Simulations of radiocarbon in a coarse-resolution world ocean model; 2. Distributions of bomb-produced carbon-14. J Geophys Res 94:8243–8264

    Article  Google Scholar 

  • US Joint Global Ocean Flux Study (US JGOFS) (1992) Report of the U.S. JGOFS Workshop on Modeling and Data Assimilation. Planning Report Number 14, U.S. JGOFS Planning Office, Woods Hole, MA, 28 pp

    Google Scholar 

  • Venrick EL, McGowan JA, Cayan DR, Hayward TL (1987) Climate and chlorophyll a: longterm trends in the central North Pacific Ocean. Science 238:70–72

    Article  Google Scholar 

  • Wallace DWR (1995) Monitoring global ocean carbon inventories. Ocean Observing System Development Panel Background, Texas A&M University, College Station, TX, 54 pp

    Google Scholar 

  • Wallace DWR (2001) Storage and transport of excess CO2 in the oceans: the JGOFS/WOCE Global CO2 survey. In: Siedler G, Gould J, Church J (eds) Ocean circulation and climate: observing and modeling the global ocean. Academic Press, New York

    Google Scholar 

  • Walsh JJ (1991) Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen. Nature 350:53–55

    Article  Google Scholar 

  • Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res 97:7373–7382

    Article  Google Scholar 

  • Wanninkhof R, Doney SC, Peng T-H, Bullister J, Lee K, Feely RA (1999) Comparison of methods to determine the anthropogenic CO2 invasion into the Atlantic Ocean. Tellus B, 51:511–530

    Article  Google Scholar 

  • Watson AJ, Orr JC (2003) Carbon dioxide fluxes in the global ocean. Springer-Verlag, (this volume)

    Google Scholar 

  • Webb DJ, deCuevas BA, Richmond CS (1998) Improved advection schemes for ocean models. J Atmos Ocean Tech 15:1171–1187

    Article  Google Scholar 

  • Yamanaka Y, Tajika E (1996) The role of the vertical fluxes of particulate organic matter and calcite in the oceanic carbon cycle: studies using an ocean biogeochemical general circulation model. Global Biogeochem Cy 10:361–382

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Doney, S.C., Lindsay, K., Moore, J.K. (2003). Global Ocean Carbon Cycle Modeling. In: Fasham, M.J.R. (eds) Ocean Biogeochemistry. Global Change — The IGBP Series (closed). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55844-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55844-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62691-3

  • Online ISBN: 978-3-642-55844-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics