Skip to main content

Antiproliferative Signalling by 1, 25(OH)2D3in Prostate and Breast Cancer Is Suppressed by a Mechanism Involving Histone Deacetylation

  • Conference paper
Vitamin D Analogs in Cancer Prevention and Therapy

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 164))

Abstract

Breast and prostate cancer are leading causes of cancer death in the Western world. Hormone ablation is the primary therapy for invasive disease, but the tumour often recurs in an androgen or oestrogen receptor negative form for which novel therapies are sought urgently. The vitamin D receptor (VDR)may provide an important alternative therapeutic target. However, cancer cell line models from these tissues display a range of sensitivities to the antiproliferativeffects of 1α,25dihydroxyvitamin D3(1α,25(OH)2D3). The reason for apparent 1α,25(OH)2D3insensitivity is currently unknown and we have investigatedepigenetic mechanisms that may suppress the transcriptional activity of the VDR. Nuclear co-repressors have associated histone deacetylase (HDAC) activity, which keeps chromatin in a closed, transcriptionally silent state. We have found that the aggressive cancer cell lines with relative insensitivity to 1α,25(OH)2D3have elevated nuclear co-repressor levels. For example,PC-3 prostate cancer cells have a significant 1.8-fold elevation in the co-repressor SMRT compared to normal epithelial cells (P<0.05). We believe that a combination of elevated co-repressor level with reduced VDR content cancause 1α,25(OH)2D3resistance. Consistent with this, we have shown that combining a low dose of HDAC inhibitor Trichostatin A (15 nM TSA) with1α,25(OH)2D3(100 nM) synergistically inhibits the proliferation of PC-3 prostateand MDA-MB-231 breast cancer cell lines. The inhibition of proliferationwas potentiated further by treating cells with 19-nor-hexafluoride vitamin D3analogues instead of 1α,25(OH)2D3, plus TSA. For example, the combinationof 1α,25(OH)2D3and TSA-inhibited MDA-MB-231 cell proliferation by 38% (€5%), whereas Ro26-2198 (1α,25-(OH)2-16,23Z-diene-26,27-F6-19-nor-D3)and TSA inhibited growth by 62% (€2%). Therapeutically the hypercalcaemicside effects associated with 1α,25(OH)2D3could be minimized by combininglow doses of potent 1α,25(OH)2D3analogues with HDAC inhibitors as a novelanticancer regime for hormone-insensitive prostate and breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abe E, Miyaura C, Sakgami H, Takeda M, Konno K, Yamazaki T, Yoshiki S, Suda T (1981) Differentiation of mouse myeloid leukemia cells induced by 1α,25-dihydroxyvitamin D3.Proc Natl Acad Sci U S A 78:4990–4994

    Article  PubMed  CAS  Google Scholar 

  • Akutsu N, Lin R, Bastein Y, Bestawros A, Enepekides DJ, Black MJ, White JH (2001) Regulationof gene expression by 1α,25-dihydroxyvitamin D3and its analog EB1089 under growth-inhibitory conditions in squamous carcinoma cells. Mol Endocrinol 15:1127–1139

    Article  PubMed  CAS  Google Scholar 

  • Bevan C, Parker M (1999) The role of coactivators in steroid hormone action. Exp Cell Res 253:349–356

    Article  PubMed  CAS  Google Scholar 

  • Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB (1999) Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 21:103–107

    Article  PubMed  CAS  Google Scholar 

  • Campbell MJ, Elstner E, Holden S, Uskokovic M, Koeffler HP (1997) Inhibition of proliferationof prostate cancer cells by a 19-nor-hexafluoride vitamin D3analogue involves theinduction of p21waf1, p27kip1 and E-cadherin. J Mol Endocrinol 19:15–27

    Article  PubMed  CAS  Google Scholar 

  • Campbell MJ, Gombart AF, Kwok SH, Park S, Koeffler HP (2000) The anti-proliferative effectsof 1αlpha,25(OH)2D3on breast and prostate cancer cells are associated with induction of BRCA1 gene expression. Oncogene 19:5091–5097

    Article  PubMed  CAS  Google Scholar 

  • Carroll AG, Voeller HJ, Sugars L, Gelmann EP (1993) p53 oncogene mutations in three prostatecancer cell lines. Prostate 23:123–134

    Article  PubMed  CAS  Google Scholar 

  • Colston KW, Colston MJ, Feldman D (1981) 1,25-dihydroxyvitamin D3and malignant melanoma:the presence of receptors and inhibition of cell growth in culture. Endocrinology 108:1083–1086

    Article  PubMed  CAS  Google Scholar 

  • Elstner E, Linker-Israeli, Said J, Umeil T, de Vos S, Shintaku IP, Heber D, Binderup L, Uskokovic M, Koeffler HP (1995) 20-epi-vitamin D3analogues: a novel class of potent inhibitors ofproliferation and inducers of differentiation of human breast cancer cell lines. Cancer Res 55:2822–2830

    PubMed  CAS  Google Scholar 

  • Getzenberg RH, Light BW, Lapco PE, Konety BR, Nangia AK, Acierno JS, Dhir R, Shurin Z,Day RS, Trump DL, Johnson CS (1997) Vitamin D inhibition of prostate adenocarcinomagrowth and metastasis in the Dunning rat prostate model system. Urology 50:999–1006

    CAS  Google Scholar 

  • Gibson DF, Bickle DD, Harris J (1998) All-trans retinoic acid blocks the antiproliferativeprodifferentiating actions of 1,25-dihydroxyvitamin D3in normal human keratinocytes. Cell Physiol 174:1–8

    Article  CAS  Google Scholar 

  • Grignani F, De Matteis S, Nervi C, Tomassoni L, Gelmetti V, Cioce M, Fanelli M, Ruthardt M, Farrara FF, Zamir I, Seiser C, Grignani F, Lazar MA, Minucci S, Pelicci PG (1998) Fusionproteins of the retinoic acid-a recruit histone deacetylase in promyelocytic leukaemia.Nature 391:815–818

    Article  PubMed  CAS  Google Scholar 

  • Jepsen K, Rosenfeld MG (2002) Biological roles and mechanistic actions of co-repressor complexes. J Cell Sci 115:689–698

    PubMed  CAS  Google Scholar 

  • Koike M, Elstner E, Campbell MJ, Asou H, Uskokovic M, Tsuruoka N, Koeffler HP (1997) 19-nor-hexafluoride analogue of vitamin D3: a novel class of potent inhibitors of proliferationof human breast cell lines. Cancer Res 57:4545–4550

    PubMed  CAS  Google Scholar 

  • Koike M, Koshizuka K, Kawabata H, Yang R, Taub HE, Said J, Uskokovic M, Tsuruoka N,Koeffler HP (1999) 20-cyclopropyl-cholecalciferol vitamin D3analogs: a unique class ofpotent inhibitors of proliferation of human prostate, breast and myeloid leukaemia celllines. Anticancer Res 19:1689–1698

    PubMed  CAS  Google Scholar 

  • Konety BR, Schwartz GG, Acierno JS Jr, Becich MJ, Getzenberg RH (1996) The role of vitamin D in normal prostate growth and differentiation. Cell Growth Differ 7:1563–1570

    PubMed  CAS  Google Scholar 

  • Koshizuka K, Koike M, Asou H, Cho SK, Stephen T, Rude RK, Binderup L, Uskokovic M,Koeffler HP (1999) Combined effect of vitamin D3analogs and paclitaxel on the growthof MCF-7 breast cancer in vivo. Breast Cancer Res Treat 53:113–120

    CAS  Google Scholar 

  • Kubota T, Koshizuka K, Koike M, Uskokovic M, Miyoshi I, Koeffler HP (1998) 19-nor-26,27-bishomo-vitamin D3analogs: a unique class of potent inhibitors of proliferation of humanprostate, breast, and hematopoietic cancer cells. Cancer Research 58:3370–3375

    PubMed  CAS  Google Scholar 

  • Lin RJ, Nagy L, Inoue S, Shao W, Miller WH Jr, Evans RM (1998) Role of the histone deacetylasecomplex in acute promyelocytic leukaemia. Nature 391:811–814

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Lee M, Cohen M, Bommakanti M, Freedman LP (1996) Transcriptional activation ofthe cdk inhibitor p21 by vitamin D3leads to the induced differentiation of themyelomonocytic cell line U937.Genes Dev 10:142–153

    Article  PubMed  CAS  Google Scholar 

  • Marks PA, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK (2001) Histone deacetylasesand cancer: causes and therapies. Nature Cancer Reviews 1:194–202

    Article  CAS  Google Scholar 

  • Miller CW, Morosetti R, Campbell MJ, Mendoza S, Koeffler HP (1997) Integrity of the 1,25-dihydroxyvitamin D3receptor in bone, lung and other cancers. Mol Carcinogenesis 19:254–257

    Article  CAS  Google Scholar 

  • Miller GJ, Stapleton GE, Hedlund TE, Moffat KA (1995) Vitamin D receptor expression,24-hydroxylase activity, and inhibition of growth by 1αlpha,25-dihydroxyvitamin D3inseven human prostatic carcinoma cell lines. Clinical Cancer Res 1:997–1003

    CAS  Google Scholar 

  • Mork Hansen C, Binderup L, Hamberg K, Carlberg C (2001) Vitamin D and cancer: effects of 1,25(OH)2D3and its analogs on growth control and tumorigenesis. Front Biosci 6:820–848

    Article  Google Scholar 

  • Musgrove EA, Lilischkis R, Cornish AL, Lee CS, Setlur V, Seshadri R, Sutherland RL (1995) Expression of the cyclin-dependent kinase inhibitors p16INK4, p15INK4B and p21WAF1/CIP1 in human breast cancer. Int J Cancer 63:584–591

    Article  PubMed  CAS  Google Scholar 

  • Narvaez CJ, Zinser G, Welsh J (2001) Functions of 1αlpha,25-dihydroxyvitamin D3in mammarygland: from normal development to breast cancer. Steroids 66:301–308

    Article  PubMed  CAS  Google Scholar 

  • Negrini M, Sabbioni S, Halder S, Possati L, Castagnoli A, Corallini A, Barbanti-Brodano G,Croce CM (1994) Tumour and growth suppression of breast cancer cells by chromosome 17-associated functions. Cancer Res 54:1818–1824

    CAS  Google Scholar 

  • Peehl DM, Skowronski RJ, Leung GK, Wong ST, Stamey TA, Feldman D (1994) Antiproliferativeeffects of 1,25-dihydroxyvitamin D3on primary cultures of human prostatic cells. Cancer Res 54:805–810

    PubMed  CAS  Google Scholar 

  • Polly P, Herdick M, Moehren U, Baniahmad A, Heinzel T, Carlberg C (2000) VDR-Alien: anovel, DNA-selective vitamin D3receptor-corepressor partnership. FASEB J 14:1455–63

    Article  PubMed  CAS  Google Scholar 

  • Rashid SF, Mountford JC, Gombart AF, Campbell MJ (2001a) 1α25-dihydroxyvitamin D3displaysdivergent growth effects in both normal and malignant cells. Steroids 66:433–440

    Article  CAS  Google Scholar 

  • Rashid SF, Moore JS, Walker E, Driver PM, Engel J, Edwards CE, Brown G, Uskokovic MR,Campbell MJ (2001b) Synergistic growth inhibition of prostate cancer cells by 1α,25-dihydroxyvitamin D3and its 19-nor-hexafluoride analogs in combination with either sodiumbutyrate or trichostatin A. Oncogene 20:1860–1872

    CAS  Google Scholar 

  • Skowronski RJ, Peehl DM, Feldman D (1993) Vitamin D and prostate cancer: 1,25 dihydroxyvitamin D3receptors and actions in human prostate cancer cell lines. Endocrinology 132:1952–1960

    Article  PubMed  CAS  Google Scholar 

  • Tagami T, Lutz WH, Kumar R, Jameson JL (1998) The interaction of the vitamin D receptorwith nuclear corepressors and coactivators. Biochem Biophys Res Comm 253:358–363

    Article  PubMed  CAS  Google Scholar 

  • Tamimi Y, Bringuier PP, Smit F, van Bokhoven A, Debruyne FM, Schalken JA (1996) p16 mutations/deletions are not frequent events in prostate cancer. Brit J Cancer 74:120–122

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Glass CK, Rosenfeld MG (1999) Coactivator and corepressor complexes in nuclear receptorfunction. Curr Opin Genet Dev 9:140–147

    Article  PubMed  CAS  Google Scholar 

  • Zajchowski DA, Bartholdi MF, Gong Y, Webster L, Liu H, Munishkin A, Beauheim C, Harvey S, Ethier SP, Johnson PH (2001) Identification of gene expression profiles that predict theaggressive behavior of breast cancer cells. Cancer Res 61:5168–5178

    PubMed  CAS  Google Scholar 

  • Zhu W, Lakshmanan RR, Beal MD, Otterson GA (2001) DNA methyltransferase inhibition enhancesapoptosis induced by histone deacetylase inhibitors. Cancer Res 61:1327–1333

    PubMed  CAS  Google Scholar 

  • Zhuang SH, Schwartz GG, Cameron D, Burnstein KL (1997) Vitamin D receptor content andtranscriptional activity do not fully predict antiproliferative effects of vitamin D in humanprostate cancer cell lines. Mol Cell Endocrinol 126:83–90

    Article  PubMed  CAS  Google Scholar 

  • Zinser G, Packman K, Welsh J (2002) Vitamin D3receptor ablation alters mammary glandmorphogenesis. Development 129:3067–3076

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Banwell, C.M., Singh, R., Stewart, P.M., Uskokovic, M.R., Campbell, M.J. (2003). Antiproliferative Signalling by 1, 25(OH)2D3in Prostate and Breast Cancer Is Suppressed by a Mechanism Involving Histone Deacetylation. In: Reichrath, J., Tilgen, W., Friedrich, M. (eds) Vitamin D Analogs in Cancer Prevention and Therapy. Recent Results in Cancer Research, vol 164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55580-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55580-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62435-3

  • Online ISBN: 978-3-642-55580-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics