Skip to main content

Importance Of Cytochrome P450-Mediated Metabolism in the Mechanism of Action of Vitamin D Analogs

  • Conference paper
Vitamin D Analogs in Cancer Prevention and Therapy

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 164))

Abstract

The elucidation of the metabolic pathway for vitamin D, including the delineation of the specific cytochrome P450s (CYPs) involved in activation and catabolism,has emphasized the overall importance of metabolic considerations in vitamin D analog design. This short review attempts to summarize recent findings with isolated CYPs and animal models in which CYPs are genetically manipulated to draw attention to structural features of vitamin D analogs that make them more or less resistant to metabolic enzymes. We conclude by placing metabolic considerations in the context of the other important aspects of vitamin D analogs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jones G, Strugnell SA, DeLuca HF (1998) Current understanding of the molecular actions of vitamin D. Physiol Rev 78:1193–1231

    PubMed  CAS  Google Scholar 

  2. Haussler MR, Whitfield GK, Haussler CA, Hsieh JC, Thompson PD, Selznick SH, Dominguez CE, Jurutka PW (1998) The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. J Bone Miner Res 13:325–349

    Article  PubMed  CAS  Google Scholar 

  3. Guo Y-D, Strugnell S, Back DW, Jones G (1993) Transfected human liver cytochrome P-450 hydroxylates vitamin D analogs at different side-chain positions. Proc Natl Acad Sci U S A 90:8668–8672

    Article  PubMed  CAS  Google Scholar 

  4. St-Arnaud R, Messerlian S, Moir JM, Omdahl JL, Glorieux FH (1997) The 25-hydroxyvitamin D 1-alpha-hydroxylase gene maps to the pseudovitamin D-deficiency rickets (PDDR) disease locus. J Bone Miner Res 12:1552–1559

    Article  PubMed  CAS  Google Scholar 

  5. Jones G, Ramshaw H, Zhang A, Cook R, Byford V, White J, Petkovich M (1999) Expression and activity of vitamin D-metabolizing cytochrome P450s (CYP1alpha and CYP24) in human nonsmall cell lung carcinomas. Endocrinology 140:3303–3310

    Article  PubMed  CAS  Google Scholar 

  6. Fu GK, Lin D, Zhang MY, Bikle DD, Shackleton CH, Miller WL, Portale AA (1997) Cloning of human 25-hydroxyvitamin D-1 alpha-hydroxylase and mutations causing vitamin D-dependent rickets type 1. Mol Endocrinol 11:1961–1970

    Article  PubMed  CAS  Google Scholar 

  7. Makin G, Lohnes D, Byford V, Ray R, Jones G (1989) Target cell metabolism of 1,25-dihydroxyvitamin D3 to calcitroic acid. Evidence for a pathway in kidney and bone involving 24-oxidation. Biochem J 262:173–180

    PubMed  CAS  Google Scholar 

  8. Reddy GS, Tserng KY (1989) Calcitroic acid, end product of renal metabolism of 1,25-dihydroxyvitamin D3 through C-24 oxidation pathway. Biochemistry 28:1763–1769

    Article  PubMed  CAS  Google Scholar 

  9. Rosen H, Reshef A, Maeda N, Lippoldt A, Shpizen S, Triger L, Eggertsen G, Bjorkhem I,Leitersdorf E (1998) Markedly reduced bile acid synthesis but maintained levels of cholesterol and vitamin D metabolites in mice with disrupted sterol 27-hydroxylase gene.J Biol Chem 273:14805–14812

    CAS  Google Scholar 

  10. St-Arnaud R (1999) Targeted inactivation of vitamin D hydroxylases in mice. Bone 25:127–129

    Article  PubMed  CAS  Google Scholar 

  11. St-Arnaud R, Arabian A, Travers R, Barletta F, Raval-Pandya M, Chapin K, Depovere J,Mathieu C, Christakos S, Demay MB, Glorieux FH (2000) Deficient mineralization of intramembranous bone in vitamin D-24-hydroxylase-ablated mice is due to elevated 1,25-dihydroxyvitamin D and not to the absence of 24,25-dihydroxyvitamin D. Endocrinology 141:2658–2666

    PubMed  CAS  Google Scholar 

  12. Dardenne O, Prud_homme J, Arabian A, Glorieux FH, St-Arnaud R (2001) Targeted inactivation of the 25-hydroxyvitamin D3–1(alpha)-hydroxylase gene (CYP27B1) creates an animal model of pseudovitamin D-deficiency rickets. Endocrinology 142:3–1

    Article  PubMed  CAS  Google Scholar 

  13. Panda DK, Miao D, Tremblay ML, Sirois J, Farookhi R, Hendy GN, Goltzman D (2001)Targeted ablation of the 25-hydroxyvitamin D 1alpha-hydroxylase enzyme: evidence for skeletal, reproductive, and immune dysfunction. Proc Natl Acad Sci USA 98:7498–7503

    Article  PubMed  Google Scholar 

  14. Fraser D, Kooh SW, Kind P, Holick MF, Tanaka Y, DeLuca HF (1973) Pathogenesis of hereditary vitamin-D-dependent rickets. An inborn error of vitamin D metabolism involving defective conversion of 25-hydroxyvitamin D to 1 alpha,25-dihydroxyvitamin D. N Engl J Med 289:817–822

    Article  PubMed  CAS  Google Scholar 

  15. DeLuca HF (1988) The vitamin D story: a collaborative effort of basic science and clinical medicine. FASEB J 2:224–236

    PubMed  CAS  Google Scholar 

  16. Kitanaka S, Murayama A, Sakaki T, Inouye K, Seino Y, Fukumoto S, Shima M, Yukizane S, Takayanagi M, Niimi H, Takeyama K, Kato SJ (1999) No enzyme activity of 25-hydroxyvitamin D3 1alpha-hydroxylase gene product in pseudovitamin D deficiency rickets, including that with mild clinical manifestation. Clin Endocrinol Metab 84:4111–4117

    Article  CAS  Google Scholar 

  17. Jones G, Byford V, Arabian A, St-Arnaud R (2000) Altered pharmacokinetics of 1a,25-(OH)2D3 in blood and tissues of the CYP24-null mouse (abstract). J Bone Miner Res 15:1246,S199 Importance Of Cytochrome P450-Mediated Metabolism in the Mechanism of Action 199

    Article  Google Scholar 

  18. Masuda S, Arabian A, McCaig J, Kaufmann M, Strugnell SA, Knutson JC, St-Arnaud R,Jones G (2002) CYP24-null keratinocytes demonstrate that CYP24 Is responsible for activation and inactivation of 1a(OH)D2 (abstract).J Bone Miner Res 17:SU458

    Google Scholar 

  19. Masuda S, Strugnell S, Calverley MJ, Makin HL, Kremer R, Jones G (1994) In vitro metabolism of the anti-psoriatic vitamin D analog, calcipotriol, in two cultured human keratinocyte models. J Biol Chem 269:4794–4803

    PubMed  CAS  Google Scholar 

  20. Masuda S, Byford V, Kremer R, Makin HL, Kubodera N, Nishii Y, Okazaki A, Okano T,Kobayashi T, Jones G (1996) In vitro metabolism of the vitamin D. J Biol Chem 271:8700–8708

    CAS  Google Scholar 

  21. Shankar VN, Dilworth FJ, Makin HL, Schroeder NJ, Trafford DJ, Kissmeyer AM, Calverley MJ, Binderup E, Jones G (1997) Metabolism of the vitamin D analog EB1089 by cultured human cells: redirection of hydroxylation site to distal carbons of the side-chain. Biochem Pharmacol 53:783–793

    Article  PubMed  CAS  Google Scholar 

  22. Dilworth FJ, Williams GR, Kissmeyer AM, Nielsen JL, Binderup E, Calverley MJ, Makin HL, Jones G (1997) The vitamin D analog, KH1060, is rapidly degraded both in vivo and in vitro via several pathways: principal metabolites generated retain significant biological activity. Endocrinology 138:5485–5496

    Article  PubMed  CAS  Google Scholar 

  23. Honda A, Nakashima N, Shida Y, Mori Y, Nagata A, Ishizuka S (1993) Modification of 1 alpha,25-dihydroxyvitamin D3 metabolism by introduction of 26,26,26,27,27,27-hexafluoro atoms in human promyelocytic leukaemia (HL-60) cells: isolation and identification of a novel bioactive metabolite, 26,26,26,27,27,27-hexafluoro-1 alpha,23(S),25-trihydroxyvitamin D3. Biochem J 295:509–516

    PubMed  CAS  Google Scholar 

  24. Komuro S, Sato M, Kanamaru H, Kaneko H, Nakatsuka I, Yoshitake A (1999) In vivo and in vitro pharmacokinetics and metabolism studies of 26,26,26,27,27,27-F6–1,25(OH)2 vitamin D3 (Falecalcitriol) in rat: induction of vitamin D6–1-hydroxylase (CYP24) responsible for 23S-hydroxylation in target tissues and the drop in serum levels. Xenobiotica 29:6–1

    Article  PubMed  CAS  Google Scholar 

  25. Miyamoto Y, Shinki T, Yamamoto K, Ohy Y, Iwasaki H, Hosotani R, Kasama T,Takayama H, Yamada S, Suda T (1997) 1alpha,25-dihydroxyvitamin D3–24-hydroxylase (CYP24) hydroxylates the carbon at the end of the side chain (C-26) of the C-24-fluorinated analog of 1alpha,25-dihydroxyvitamin D3. J Biol Chem 272:3–24

    Article  PubMed  CAS  Google Scholar 

  26. Satchell DP, Norman AW (1996) Metabolism of the cell differentiating agent alpha,25(OH)2–16-ene-23-yne vitamin D3 by leukemic cells. J Steroid Biochem Mol Biol 57:2–16

    Article  PubMed  CAS  Google Scholar 

  27. Jones G, Byford V, Makin HL, Kremer R, Rice RH, deGraffenried LA, Knutson JC, Bishop CW Anti-proliferative activity and target cell catabolism of the vitamin D analog 1 alpha,24(S)-(OH)2D2 in normal and immortalized human epidermal cells. (1996) Biochem Pharmacol 52:133–140

    Article  PubMed  CAS  Google Scholar 

  28. Rao DS, Siu-Caldera ML, Uskokovic MR, Horst RL, Reddy GS (1999) Physiological significance of C-28 hydroxylation in the metabolism of 1alpha,25-dihydroxyvitamin D2. Arch Biochem Biophys 368:319–328

    Article  PubMed  CAS  Google Scholar 

  29. Shankar VN, Propp AE, Schroeder N, Surber BW, Makin HL, Jones G (2001) In vitro metabolism of 19-nor-1alpha, 25-(OH)2D2 in cultured cell lines: inducible synthesis of lipidand water-soluble metabolites. Arch Biochem Biophys 387:297–306

    Article  PubMed  CAS  Google Scholar 

  30. Dilworth FJ, Calverley MJ, Makin HLJ, Jones G (1994) Increased biological activity of 20-epi-1,25-dihydroxyvitamin D3 is due to reduced catabolism and altered protein binding.Biochem Pharmacol 47:87–93

    Google Scholar 

  31. Shankar VN, Byford V, Prosser DE, Schroeder NJ, Makin HLJ, Wiesinger H, Neef G,Steinmeyer A, Jones G (2001) Metabolism of a 20-methyl substituted series of vitamin D analogs by cultured human cells: apparent reduction of 23-hydroxylation of the side chain by the 20-methyl group. Biochem Pharmacol 61:893–902

    Article  PubMed  CAS  Google Scholar 

  32. Ferrara J, McCuaig K, Hendy GN, Uskokovic M, White JH (1994) Highly potent transcriptional activation by 16-ene derivatives of 1,25-dihydroxyvitamin D3. Lack of modulationby 9-cis-retinoic acid of response to 1,25-dihydroxyvitamin D3 or its derivatives. J Biol Chem 269:2971–2981

    PubMed  CAS  Google Scholar 

  33. Feldman D et al (2002) Symposium on vitamin D analogs in the prevention and therapy of cancer, Homburg, Saar, Germany, May 3–4, 2002

    Google Scholar 

  34. Siu-Caldera ML, Sekimoto H, Peleg S, Nguyen C, Kissmeyer AM, Binderup L, Weiskopf A, Vouros P, Uskokovic MR, Reddy GS (1999) Enhanced biological activity of 1alpha,25-dihydroxy-20-epi-vitamin D3, the C-20 epimer of 1alpha,25-dihydroxyvitamin D3, is in part due to its metabolism into stable intermediary metabolites with significant biological activity. J Steroid Biochem Mol Biol 71:111–121

    Article  PubMed  CAS  Google Scholar 

  35. Van den Bemd GC, Dilworth FJ, Makin HL, Prahl JM, Deluca HF, Jones G, Pols HA, vanLeeuwen JP (2000) Contribution of several metabolites of the vitamin D analog 20-epi-22-oxa-24a,26a,27a-tri-homo-1,25-(OH)2 vitamin D3 (KH 1060) to the overall biologicalactivity of KH1060 by a shared mechanism of action. Biochem Pharmacol 59:621–627

    Article  PubMed  Google Scholar 

  36. Bischof MG, Siu-Caldera ML, Weiskopf A, Vouros P, Cross HS, Peterlik M, Reddy GS (1998) Differentiation-related pathways of 1 alpha,25-dihydroxycholecalciferol metabolismin human colon adenocarcinoma-derived Caco-2 cells: production of 1 alpha,25-dihydroxy-3epi-cholecalciferol. Exp Cell Res 241:194–201

    Article  PubMed  CAS  Google Scholar 

  37. Masuda S, Kamao M, Schroeder NJ, Makin HLJ, Jones G, Kremer R, Rhim J, Okano T (2000) Characterization of 3-epi-1alpha,25-dihydroxyvitamin D3 involved in 1alpha,25-dihydroxyvitamin D3 metabolic pathway in cultured cell lines. Biol Pharm Bull 23:133–139

    Article  PubMed  CAS  Google Scholar 

  38. Siu-Caldera ML, Rao DS, Astecker N, Weiskopf A, Vouros P, Konno K, Fujishima T,Takayama H, Peleg S, Reddy GS (2001) Tissue-specific metabolism of 1alpha,25-dihydroxy-20-epi-vitamin D3 into new metabolites with significant biological activity: studiesin rat osteosarcoma cells (UMR 106 and ROS 17/2.8). J Cell Biochem 82:99–609

    Google Scholar 

  39. Reddy GS, Rao DS, Siu-Caldera ML, Astecker N, Weiskopf A, Vouros P, Sasso GJ,Manchand PS, Uskokovic MR (2000) 1alpha,25-dihydroxy-16-ene-23-yne-vitamin D3 and 1alpha,25-dihydroxy-16-ene-23-yne-20-epi-vitamin D3: analogs of 1alpha,25-dihydroxyvitamin D3 that resist metabolism through the C-24 oxidation pathway are metabolized through the C-3 epimerization pathway. Arch Biochem Biophys 383:197–205

    Article  PubMed  CAS  Google Scholar 

  40. Sekimoto H, Siu-Caldera ML, Weiskopf A, Vouros P, Muralidharan KR, Okamura WH, Uskokovic MR, Reddy GS(1999) 1alpha,25-dihydroxy-3-epi-vitamin D3: in vivo metabolite of 1alpha,25-dihydroxyvitamin D3 in rats. FEBS Lett 448:278–282

    Article  PubMed  CAS  Google Scholar 

  41. Kissmeyer A-M, Mathiasen IS, Binderup L (1995) Pharmacokinetic parameters of common synthetic vitamin D analogs. Endocrine 3:263–266

    Article  PubMed  CAS  Google Scholar 

  42. Knutson JC, LeVan LW, Valliere CR, Bishop CW (1997) Pharmacokinetics and systemic effect on calcium homeostasis of 1 alpha,24-dihydroxyvitamin D2 in rats. Comparison with 1 alpha,25-dihydroxyvitamin D2, calcitriol, and calcipotriol. Biochem Pharmacol 53:829–837

    Article  PubMed  CAS  Google Scholar 

  43. Jones G (1997) Analog metabolism. In: Feldman D, Glorieux FH, Pike JW (eds) Vitamin D. Basic Science of New Analogs. Academic Press, San Diego, pp 973–997

    Google Scholar 

  44. Jones G (2002) Pharmacological mechanisms of therapeutics: vitamin D and analogs.In:Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of Bone Biology, vol 2, 2nd edn. Academic Press,San Diego pp 1407–1422

    Chapter  Google Scholar 

  45. Masuda S, Jones G (2003) Vitamin D analogs: drug design based on proteins involved in the vitamin D signal transduction cascade. Current drug targets. Immune Endocr Metab Disor 3:43–67

    Article  CAS  Google Scholar 

  46. Kobayashi T, Tsugawa N, Okano T, Masuda S, Takeuchi A, Kubodera N, Nishii Y (1994) The binding properties, with blood proteins, and tissue distribution of 22-oxa-1 alpha,25-dihydroxyvitamin D3, a noncalcemic analogue of 1 alpha, 25-dihydroxyvitamin D3, in rats. J Biochem 115:373–380

    PubMed  CAS  Google Scholar 

  47. Bouillon R, Okamura WH, Norman A.W (1995) Structure-function relationships in the vitamin D endocrine system. Endocr Rev 16:200–257

    PubMed  CAS  Google Scholar 

  48. Williams GR, Bland R, Sheppard MC (1995) Retinoids modify regulation of endogenous gene expression by vitamin D3 and thyroid hormone in three osteosarcoma cell lines. Endocrinology 136:4304–4314

    Article  PubMed  CAS  Google Scholar 

  49. Rochel N, Wurtz JM, Mitschler A, Klaholz B, Moras D (2000) The crystal structure of the nuclear receptor for vitamin D bound to its natural ligand. Mol Cell 5:173–179

    Article  PubMed  CAS  Google Scholar 

  50. Yamamoto K, Masuno H, Choi M, Nakashima K, Taga T, Ooizumi H, Umesono K, Sicinski W, VanHooke J, DeLuca HF, Yamada S (2000) Three-dimensional modeling of and ligand docking to vitamin D receptor ligand binding domain. Proc Natl Acad Sci U S A 97:1467–1472

    Article  PubMed  CAS  Google Scholar 

  51. Peleg S, Sastry M, Collins ED, Bishop JE, Norman AW (1995) Distinct conformational changes induced by 20-epi analogues of 1 alpha,25-dihydroxyvitamin D3 are associated with enhanced activation of the vitamin D receptor. J Biol Chem 270, 10551–10558

    Article  PubMed  CAS  Google Scholar 

  52. Carlberg C (1995) Mechanisms of nuclear signalling by vitamin D3. Interplay with retinoid and thyroid hormone signalling. Eur J Biochem 231:517–527

    Article  PubMed  CAS  Google Scholar 

  53. Van den Bemd GCM, Pols HAP, Birkenhager JC, van Leeuwen JPTM (1996) Conformational change and enhanced stabilization of the vitamin D receptor by the 1,25-dihydroxyvitamin D3 analog KH1060. Proc Natl Acad Sci U S A 93:10685–10690

    Article  PubMed  Google Scholar 

  54. Liu Y-Y, Collins ED, Norman AW, Peleg S (1997) Differential interaction of 1alpha,25-dihydroxyvitamin D3 analogues and their 20-epi homologues with the vitamin D receptor. J Biol Chem 272:3336–3345

    Article  PubMed  CAS  Google Scholar 

  55. Liu Y-Y, Nguyen C, Peleg S (2000) Regulation of ligand-induced heterodimerization and coactivator interaction by the activation function-2 domain of the vitamin D receptor.Mol Endocrinol 14:1776–1787

    Article  PubMed  CAS  Google Scholar 

  56. Rachez C, Lemon BD, Suldan Z, Bromleigh V, Gamble M, Naar AM, Erdjument-Bromage H, Tempst P, Freedman LP (1999) Ligand-dependent transcription activation by nuclear receptors requires the DRIP complex. Nature 39:824–828

    Google Scholar 

  57. Guo B, Aslam F, van Wijnen AJ, Roberts SG, Frenkel B, Green MR, DeLuca H, Lian JB,Stein GS, Stein JL (1997) YY1 regulates vitamin D receptor/retinoid X receptor mediated transactivation of the vitamin D responsive osteocalcin gene. Proc Natl Acad Sci U S A 94:121–126

    CAS  Google Scholar 

  58. Albertson DG, Ylstral B, Segraves R, Collins C, Dairkee SH, Kowbel D, Kuo W-L, Gray JW, Pinkel D(2000) Quantitative mapping of amplicon structure by array CGH identifies CYP24 as a candidate oncogene. Nat Genet 25:144–146

    Article  PubMed  CAS  Google Scholar 

  59. Schuster I, Egger H, Astecker N, Herzig G, Schussler M, Vorisek G (2001) Selective inhibitors of CYP24: mechanistic tools to explore vitamin D metabolism in human keratinocytes.Steroids 66:451–462

    Article  PubMed  CAS  Google Scholar 

  60. Schuster I, Egger H, Bikle D, Herzig G, Reddy GS, Stuetz A, Stuetz P, Vorisek G (2001)Selective inhibition of vitamin D hydroxylases in human keratinocytes. Steroids 66:409–422

    Article  PubMed  CAS  Google Scholar 

  61. Chlebowski RT, Col N, Winer EP, Collyar DE, Cummings SR, Vogel VG 3rd, Burstein HJ,Eisen A, Lipkus I, Pfister DG (2002) American Society of Clinical Oncology technology assessment of pharmacologic interventions for breast cancer risk reduction including tamoxifen, raloxifene, and aromatase inhibition. J Clin Oncol 203328–3343

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Masuda, S., Gao, M., Zhang, A., Kaufmann, M., Jones, G. (2003). Importance Of Cytochrome P450-Mediated Metabolism in the Mechanism of Action of Vitamin D Analogs. In: Reichrath, J., Tilgen, W., Friedrich, M. (eds) Vitamin D Analogs in Cancer Prevention and Therapy. Recent Results in Cancer Research, vol 164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55580-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55580-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62435-3

  • Online ISBN: 978-3-642-55580-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics