Skip to main content

Part of the book series: NATO ASI Series ((NATO ASI F,volume 9))

Abstract

The method of multibody systems is discussed with respect to the computerized generation of symbolical equations of motion. The kinematics are presented in an inertial frame and, additionally, in an often very useful moving reference frame. The dynamics include not only spring and damper forces, but also integral forces and contact forces typical for vehicle applications. The equations of motion are found by d’Alembert’s principle and Jourdain’s principle featuring generalized coordinates and generalized velocities, holonomic and nonholonomic constraints. It is also shown how constraint forces, necessary for the modeling of contact and friction, can be computed using a minimal number of equations. Finally, the symbolical formalism NEWEUL is introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hooker, W.W., and Margulies, G., “The Dynamical Attitude Equations for an N-Body Satellite”, J. Astr. Sci., Vol. 12, 1965, pp. 123–128.

    MathSciNet  Google Scholar 

  2. Roberson, R.E., and WITTENBURG, J., “A Dynamical Formalism for an Arbitrary Number of Interconnected Rigid Bodies, with Reference to the Problem of Satellite Attitude Control”, Proc. 3rd Congress Int. Fed. Auto. Control (IFAC), London, 1966, pp. 46 D. 1–46 D.9.

    Google Scholar 

  3. Frisch, H.P., A Vector-Dyadic Development of the Equations of Motion for N-coupled Rigid Bodies and Point Masses, Techn. Note TN D - 7767, Nat. Aeron. Space Adm. (NASA), Washington, D.C. 1974.

    Google Scholar 

  4. Wittenburg, J., Dynamics of Systems of Rigid Bodies, Teubner, Stuttgart, 1977.

    Book  MATH  Google Scholar 

  5. Andrews, G.C., and Kesavan, H.K., “Simulation of Multibody Systems Using the Vector-Network Model”, Dynamics of Multibody Systems, Springer-Verlag, Berlin, Heidelberg, New York, 1978, pp. 1–13.

    Google Scholar 

  6. Paul, B., Kinematics and Dynamics of Planar Machinery, Prentice-Hall, Englewood Cliffs, 1979.

    Google Scholar 

  7. Orlandea, N., Chace, M.A., and Calahan, D.A., “A Sparsity Oriented Approach to the Dynamic Analysis and Design of Mechanical Systems”, ASME J. Eng. Industry, Vol. 99, 1977, pp. 773–784.

    Article  Google Scholar 

  8. Haug, E.J., Wehage, R.A., and Barman, N.C., “Dynamic Analysis and Design of Constrained Mechanical Systems”, ASME J. Mech. Design, Vol. 103, 1981, pp. 560–570.

    Article  Google Scholar 

  9. Rosenthal, D.E., and Sherman, M.A., Symbolic Multibody Equations via Kane’s Method, AAS-Paper 83–303, AAS Publ. Office, San Diego, 1983.

    Google Scholar 

  10. Schiehlen, W.O., and Kreuzer, E.J., “Symbolic Computerized Derivation of Equations of Motion”, Dynamics of Multibody Systems, Springer-Verlag, Berlin-Heidelberg-New York, 1978, pp. 290–305.

    Google Scholar 

  11. Kane, T.R., and Levinson, D.A., “Formulation of Equations of Motion for Complex Spacecraft”, J. Guidance Control, Vol. 3, 1980, pp. 99–112.

    Article  MathSciNet  MATH  Google Scholar 

  12. Schiehlen, W.O., “Nichtlineare Bewegungsgleichungen großer Mehrkörpersysteme”, Z. angew. Math. Mech., Vol. 61, 1981, pp. 413–419.

    Article  MathSciNet  MATH  Google Scholar 

  13. Schwertassek, R., Der Roberson/Wittenburg-Formalismus und das Programmsystem MULTIBODY zur Rechnersimulation von Mehrkörpersystemen, Forschungsbericht DFVLR-FB 78–08, DFVLR, Köln, 1978.

    Google Scholar 

  14. Chace, M.A., “Using DRAM and ADAMS Programs to Simulate Machinery, Vehicles”, Agricult. Eng., Vol. 59, No. 11, 1981, pp. 18–19 and No. 12, 1981, pp. 16–18.

    Google Scholar 

  15. Nikravesh, P.E., and Chung, I.S., “Application of Euler Parameters to the Dynamic Analysis of Three-Dimensional Constrained Mechanical Systems”, ASME J. Mech. Design, Vol. 104, 1982, pp. 785–791.

    Article  Google Scholar 

  16. Rongved, L., and Fletcher, H.J., “Rotational Coordinates”, J. Franklin Inst., Vol. 277, 1964, pp. 414–421.

    Article  MATH  Google Scholar 

  17. Schwertassek, R., and Roberson, R.E., “A State-Space Dynamical Representation for Multibody Mechanical System”, Part I and Part II, Acta Mechanica, to appear.

    Google Scholar 

  18. Kreuzer, E.J., and Schmoll, K.P., “Zur Berechnung von Reaktionskräften in Mehrkörpersystemen”, Z. angew. Math. Mech., to appear.

    Google Scholar 

  19. Kreuzer, E.J., and Schiehlen, W.O., Generation of Symbolic Equations of Motion for Complex Spacecraft Using Formalism NEWEUL, AAS-Paper No. 89–302, AAS Publ. Office, San Diego, 1983.

    Google Scholar 

  20. Schramm, D., Zur symbolischen Berechnung von Zwangskräften, Zwischenbericht ZB - 10, Institut B für Mechanik, Universität Stuttgart, 1982.

    Google Scholar 

  21. Kreuzer, E.J., Schmoll, K.P., and Schramm, D., Programmpaket NEWEUL’ 83, Anleitung AN-7, Institut B für Mechanik, Universität Stuttgart, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schiehlen, W.O. (1984). Computer Generation of Equations of Motion. In: Haug, E.J. (eds) Computer Aided Analysis and Optimization of Mechanical System Dynamics. NATO ASI Series, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-52465-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-52465-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-52467-7

  • Online ISBN: 978-3-642-52465-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics