Skip to main content

Part of the book series: Springer Series in Information Sciences ((SSINF,volume 12))

Abstract

In image reconstruction from projections, one attempts to estimate values of an unknown function f of two variables at points of a finite grid (usually uniformly spaced in two orthogonal directions) from a finite number of (measured) line integrals of f. Lines can be characterized by two variables, typically a distance l and an angle θ. Usually the lines along which integrals of f are measured correspond to a grid of sample points in the (l,θ) space. Thus, both the input (the line integrals) and the output (values of f) can be thought of as samples of a function on a grid. The problem then translates into solving a system of linear equations, the size of which depends on the sizes of the grids associated with the input and the output.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. G. T. Herman: Image Reconstruction from Projections, the Fundamentals of Computerized Tomography (Academic Press, New York, 1980)

    MATH  Google Scholar 

  2. P. P. B. Eggermont, G. T. Herman, A. Lent: Iterative algorithms for large partitioned linear systems, with applications to image reconstruction, Linear Algebra and its Applications 40 37–67 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Kaczmarz: Angenäherte Auflosung von Systemen linearer Gleichungen, Bull. Acado Polon. Sci. Lett. A35 355–357 (1937)

    Google Scholar 

  4. L. F. Richardson: The approximate arithmetical solution by finite differences of physical problems involving differential equations with an application to the stresses in a masonry dam, Phil. Trans. Royal Society (London) A21Q, 307–357 (1910)

    Google Scholar 

  5. A. Ben-Israel, T. N. E. Greville: Generalized Inverses: Theory and Applications (Wiley-Interscience, New York, 1974)

    MATH  Google Scholar 

  6. G. Cimmino: Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari, La Ricerca Scientifica (Roma) XVI, Serie II, Anno IX, Vol. 1, 326–333 (1938)

    Google Scholar 

  7. G. T. Herman, R. A. Robb, J. E. Gray, R. M. Lewitt, R. A. Reynolds, B. Smith, H. Tuy, D. P. Hanson, C. M. Kratz: “Reconstruction algorithms for dose reduction in x-ray computed tomography”, in Proc, MEDCOMP ’82, Philadelphia, PA, 1982, pp. 448–455

    Google Scholar 

  8. G. T. Herman, H. Hurwitz, A. Lent: A storage efficient algorithm for finding the regularized solution of a large inconsistent system of equations, J. Inst. Maths. Applies. 25, 361–366 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  9. Y. Censor, P. P. B. Eggermont, D. Gordon: Strong underrelaxation in Kaczmarz’s method for inconsistent systems. Numerische Mathematik to appear

    Google Scholar 

  10. A. Brandt: Myltilevel adaptive solutions to boundary value problems. Math. Comp. 31, 333–390 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  11. K. Kouris, H. Tuy, A. Lent, Go T. Herman, R. M. Lewitt: Reconstruction from sparsely sampled data by ART with interpolated rays, IEEE Trans. Medical Imaging, to appear

    Google Scholar 

  12. G. T. Herman, A. Lent, S. W. Rowland: ART: mathematics and applications, a report on the mathematical foundations and on the applicability to real data of the algebraic reconstruction techniques, J. Theor. Biol. 42 1–32 (1973)

    Article  Google Scholar 

  13. G. T. Herman, A. Lent: Quadratic optimization for image reconstruction I, Computer Graphics Image Processing 5 319–332 (1976)

    Article  Google Scholar 

  14. J. E. Gray, D. P. Hanson, G. T. Herman, R. M. Lewitt, R. A. Reynolds, R. A. Robb, B. Smith, H. Tuy: “Reconstruction Algorithms for Dose Reduction in X-Ray Computed Tomography”, Technical Report MIPG63, Medical linage Processing Group, Dept. of Radiology, University of Pennsylvania (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Herman, G.T., Levkowitz, H., Tuy, H.K., McCormick, S. (1984). Multilevel Image Reconstruction. In: Rosenfeld, A. (eds) Multiresolution Image Processing and Analysis. Springer Series in Information Sciences, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51590-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51590-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-51592-7

  • Online ISBN: 978-3-642-51590-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics