Skip to main content

Abstract

Large, curved and quiescent fluid interfaces can only be realized under microgravity conditions. This enables one to investigate macroscopic, partly contained fluids having high sensitivity to weak forces. Capillary equilibrium and stability, wetting, convection driven by interfacial tension gradients, the influence of centrifugal, electric and magnetic forces normally overruled by gravity can be studied in detail.

Following a general treatment of interface properties on the molecular level, the Gibbs model of interfaces is discussed. Recent results of microgravity investigations on capillary stability and wetting are reported. Finally, the prospects for future activities are discussed. The examples considered are: dynamics of wetting, foam stability and study of intermolecular forces with implications for crystal growth, preparation of composite materials and immiscible alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Watts W., British Patent 1347, December 10, 1782

    Google Scholar 

  2. Plateau J.A.F., Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires, Gauthiers-Villars, Paris, 1873

    Google Scholar 

  3. Gibbs J.W., Collected Works, Longmans Green, New York (1928);

    MATH  Google Scholar 

  4. Gibbs J.W., Dover reprint, New York, 1961. (The original formed part of a lengthy paper, “On the equilibrium of heterogeneous substances”, appearing in several issues of Trans. Connecticut Acad. Sci.)

    Google Scholar 

  5. Van der Waals J.D., Thesis, Over de Continuiteit van den Gasen, Vloiestoftoestand, Leiden, 1873.

    Google Scholar 

  6. See also Rowlinson J.S., Nature 244, 414 (1973)

    Article  Google Scholar 

  7. Evans R., Mol. Phys., 42, 1169 (1981)

    Article  Google Scholar 

  8. Rowlinson J.S. and Widom B., Molecular Theory of Capillarity, Clarendon Press, Oxford, 1982

    Google Scholar 

  9. Bikerman J.J., Proc. 2nd Int. Cong. Surf. Activity, 3, 125 (1957), and discussion, pp. 187–190

    Google Scholar 

  10. Lester G.R., J. Colloid Sci., 16, 315 (1961)

    Article  Google Scholar 

  11. Tabor D. and Bailey A.I., Proc. 2nd Int. Cong. Surf. Activity, 3, 189 (1957)

    Google Scholar 

  12. Michaels A.S. and Dean S.W., J. Phys. Chem., 66, 1790 (1962)

    Article  Google Scholar 

  13. Johnson R.E., Jr., J. Phys. Chem., 63, 1655 (1959)

    Article  Google Scholar 

  14. Clerk Maxwell J., Encyclopaedia Britannica, 9th Ed., Vol. 5, p. 56; Adam & Charles Black, Edinburgh, 1875

    Google Scholar 

  15. Bashforth F. and Adams J.C., An attempt to test the theories of capillary action, University Press, Cambridge, 1883

    Google Scholar 

  16. Fordham S., Proc. Roy. Soc., A 194, 1 (1948)

    Google Scholar 

  17. Padday J.F., Trans. Roy. Soc. London, A 269, 265 (1971)

    Article  Google Scholar 

  18. Boucher E.A. and Evans M.J.B., Proc. Roy. Soc., A 346, 349 (1975)

    Google Scholar 

  19. Hartland S. and Hartley R.W., Axisymmetric fluid-liquid interfaces, Elsevier, Amsterdam, 1976

    MATH  Google Scholar 

  20. Orr F.M., Scriven L.E. and Rivas A.P., J. Fluid Mech., 67, 723 (1975)

    Article  MATH  Google Scholar 

  21. Langbein D., in Materials Sciences in Space, Eds. Feuerbacher B., Hamacher H. and Naumann F.J., Springer, 1986, p. 401

    Chapter  Google Scholar 

  22. Lomas H., J. Colloid Interface Sci., 33, 548 (1970)

    Article  Google Scholar 

  23. Princen H.M., J. Colloid Interface Sci., 36, 157 (1971)

    Article  Google Scholar 

  24. Wolfram E. and Faust R., in Wetting, Spreading and Adhesion, Ed. Padday J.F., Academic Press, London, 1978

    Google Scholar 

  25. Pitts E., J. Fluid Mech., 63, 487 (1974)

    Article  MATH  Google Scholar 

  26. Everett D.H. and Haynes J.M., Z. phys. Chem. (N.F.), 97, 301 (1975)

    Article  Google Scholar 

  27. Majumdar S.R. and Michael D.H., Proc. Roy. Soc., A 351, 89 (1976)

    Google Scholar 

  28. Boucher E.A., Evans M.J.B. and Kent H.J., Proc Roy. Soc., A 349, 81 (1976)

    Google Scholar 

  29. Erle M.A., Gillette R.D. and Dyson D.C., Chem. Eng. J., 1, 97 (1970)

    Article  Google Scholar 

  30. Dyson D.C., Prog. Surface and Membrane Sci., 12, 479–568 (1978)

    Google Scholar 

  31. Lord Rayleigh, Proc. Roy. Soc., 29, 71 (1879)

    Article  Google Scholar 

  32. Haynes J.M., J. Colloid Interface Sci., 32, 652 (1970)

    Article  Google Scholar 

  33. Da Riva I. and Martinez I., Proc. 3rd Europ. Symp. Mats. Sci. Space, ESA SP-142, 67 (1979)

    Google Scholar 

  34. Martinez I., Proc. 4th Europ. Symp. Mats. Sci. Space, ESA SP-191, 267 (1983)

    Google Scholar 

  35. Carruthers J.R., Gibson E.G., Klett M.G. and Facemire B.R., AIAA Paper 75–692 (1975)

    Google Scholar 

  36. Benton E.R. and Clark A., Ann Rev. Fluid Mech., 6, 257 (1974)

    Article  Google Scholar 

  37. Chandrasekhar S., Proc. Roy. Soc., A 286, 1 (1965)

    MathSciNet  Google Scholar 

  38. Cahn J.W., J. Chem. Phys., 66, 3367 (1977)

    Article  Google Scholar 

  39. Moldover M.R. and Cahn J.W., Science, 207, 1073 (1980)

    Article  Google Scholar 

  40. See, e.g., Kruyt H.R., Colloid Science, Elsevier, New York, 1952;

    Google Scholar 

  41. Spaarnay M.J., The Electrical Double Layer, Pergamon, New York, 1972

    Google Scholar 

  42. Taylor G.I., Proc. Roy. Soc., A 280, 383 (1964)

    Google Scholar 

  43. Siebel M.P.L. (Ed.), The Third Skylab Mission: Skylab Results, NASA, 1974

    Google Scholar 

  44. Proc. 4th European Symp., Materials Science under Microgravity, Madrid, 5–8 April 1983; ESA SP-191, 1983

    Google Scholar 

  45. Proc. 5th European Symp., Materials Science under Microgravity, Schloß Elmau, 5–7 November 1984; ESA SP-222, 1984

    Google Scholar 

  46. XXXIII IAF Congress, Paris, 1982

    Google Scholar 

  47. Martinez I., Proc. 5th European Symp., Materials Science under Microgravity, Schloß Elmau, 5–7 November 1984; ESA SP-222, 1984, p. 31

    Google Scholar 

  48. Da Riva I. and Martinez I., Naturwissenschaften, 7, 345 (1986)

    Article  Google Scholar 

  49. Orr F.M., Scriven L.E. and Rivas A.P., J. Colloid Interface Sci., 52, 602 (1975)

    Article  Google Scholar 

  50. Orr F.M., Scriven L.E. and Chu S., J. Colloid Interface Sci., 60, 402 (1977)

    Article  Google Scholar 

  51. Langbein D., unpublished KC-135 observations

    Google Scholar 

  52. Haynes J.M., Materials Science in Space, ESA SP-114, 467 (1976)

    Google Scholar 

  53. Wang T., as quoted in D. Dooling, SL-3 Data, Commercial Space, Winter 1986, p. 73

    Google Scholar 

  54. Sanz A., J. Fluid Mech., 156, 101 (1985)

    Article  MATH  Google Scholar 

  55. Rodot H. and Bisch C., Proc. 5th European Symp., Materials Science under Microgravity, Schloß Elmau, 5–7 November 1984; ESA SP-222, 1984, p. 23

    Google Scholar 

  56. Langbein D. and Heide W., Proc. 6th European Symp., Materials Science under Microgravity, Bordeaux, 2–5 December 1986, p. 117–123

    Google Scholar 

  57. Allen J.P. and Haynes J.M., unpublished observations

    Google Scholar 

  58. Slattery J.C., Am. Inst. Chem. Eng. J., 20, 1145 (1974)

    Article  Google Scholar 

  59. Findenegg G.H., Proc. 4th European Symp., Materials Science under Microgravity, Madrid, 5–8 April 1983; ESA SP-191, 1983, p. 385

    Google Scholar 

  60. Specorius J. and Findenegg G.H., Ber. Bunsenges. phys. Chem., 84, 690 (1980)

    Google Scholar 

  61. Loring R. and Findenegg G.H., J. Colloid Interface Sci., 84, 355 (1981)

    Article  Google Scholar 

  62. Mysels K.J., Shinoda K. and Frankel S., Soap Films, Studies of their Thinning, and a Bibliography, Pergamon, New York, 1959

    Google Scholar 

  63. Mysels K.J., J. Electroanalyt. Chem. Interf. Electrochem., 37, 23 (1972)

    Article  Google Scholar 

  64. Padday J.F., Proc. 5th European Symp., Materials Science under Microgravity, Schloß Elmau, 5–7 November 1984; ESA SP-222, 1984, p. 9

    Google Scholar 

  65. Martinez I., unpublished results

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 European Space Agency, Paris Cedex, France

About this chapter

Cite this chapter

Martinez, I., Haynes, J.M., Langbein, D. (1987). Fluid Statics and Capillarity. In: Walter, H.U. (eds) Fluid Sciences and Materials Science in Space. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46613-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46613-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46615-1

  • Online ISBN: 978-3-642-46613-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics