Skip to main content

Abstract

The growth of protein crystals in space has become a high priority microgravity activity following results obtained from flight experiments. Protein crystal growth is an essential prerequisite to the determination of the molecular structure of proteins and hence towards an understanding of biological processes on the molecular level. Applications lie in the molecular design of new drugs, in protein engineering, synthetic vaccines and also biochip electronics technology.

We give here a brief summary of the methods and recent results of protein crystallography. In particular, mention is made of the use of intense synchrotron radiation sources, which have led to the use of smaller crystal volumes and extended the resolution of data obtained. We then concentrate on surveying the methods of protein crystal growth available on earth and compare these with the methods and results obtained in space.

Recommendations are then made for future experimental developments which should lead to a better understanding of the processes and parameters of protein crystal growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Vainshtein B.K., Melik-Adamyan W.R., Barynin V.V., Vagin A.A., Grebenko A.I., Borisov V V., Bartels K.S., Fita I., Rossmann M.G., Comparison of beef liver and penicillium vitale catalases, J. Mol. Biol. 188, (1986), 49–61

    Article  Google Scholar 

  2. Dijkstra B W., Kalk K.H., Hol W.G.J, and Drenth J., Structure of bovine pancreatic phospholipase A2 at 1.7 A resolution, J. Mol. Biol. 147 (1981), 97–123

    Article  Google Scholar 

  3. Dijkstra B.W., Drenth J and Kalk K.H., Active site and catalytic mechanism of phos-pholipase A2, Nature 289 (1981) 604–606

    Article  Google Scholar 

  4. Jack A., Ladner J.E. and Klug A., Crystallographic refinement of yeast phenylalanine transfer RNA at 2.5 Å resolution, J. Mol. Biol. 108 (1976), 619–649

    Article  Google Scholar 

  5. Woo N.H., Roe B.A. and Rich A., Three-dimensional structure of E. coli initiator t RNAmetf, Nature 286 (1980), 346–351

    Article  Google Scholar 

  6. Moras D., Comarmond M.B., Fischer J., Weiss R. and Thierry J.C., Crystal structure of yeast tRNAAsp, Nature 288 (1980) 666–674

    Article  Google Scholar 

  7. Ohlendorf D.H., Anderson W.F., Fisher R.G., Takeda Y. and Matthews B.W., The molecular basis of DNA-protein recognition inferred from the structure of cro repressor, Nature 298 (1982), 718–723

    Article  Google Scholar 

  8. Brayer G. and McPherson A., Cooperative interactions of the Gene 5 protein, J. Biomolec. Struct, and Dynamics 2 (1984), 495–510

    Google Scholar 

  9. Anderson J.E., Ptashne M. and Harrison S.C., A phage repressor-operator complex at 7Å resolution, Nature 316 (1985), 596–601

    Article  Google Scholar 

  10. Kabsch W., Mannherz H.G. and Suck D., Three-dimensional structure of the complex of actin and DNase I at 4.5 Å resolution, The EMBO Journal 4 (1985), 2113–2118

    Google Scholar 

  11. Rossmann M.G. et al., Structure of a human common cold virus and functional relationship to other picornaviruses, Nature (1985), 317, 145–153; (1986)

    Article  Google Scholar 

  12. Helliwell J.R., Synchrotron X-radiation protein crystallography: instrumentation, methods and applications, Reports on Progress in Physics 47 (1984), 1403–1497

    Article  Google Scholar 

  13. Arndt U.W., X-ray position-sensitive detectors, J. Appl. Cryst. 19 (1986), 145–163

    Article  Google Scholar 

  14. Neutron scattering, Special issue Physics Today 38 (1) (1985), 25–80

    Google Scholar 

  15. Helliwell J.R., Submission to a UK “Working Party” Survey on future computing needs (1985)

    Google Scholar 

  16. Salemme F.R., A free interface diffusion technique for the crystallization of proteins for X-ray diffraction, Archives of Biochemistry and Biophysics 151 (1972), 533–539

    Article  Google Scholar 

  17. Koeppell R.E., Stroud R.M., Pena V.A. and Santi D.V., A pulsed diffusion technique for the growth of protein crystals for X-ray diffraction, J. Mol. Biol. 98 (1975) 155–160

    Article  Google Scholar 

  18. Smit J.D.G., Reflections on protein crystallization, J. de Chimie physique 76 (1979), 805–810

    Google Scholar 

  19. McPherson A. Jr., Crystallization of proteins from polyethylene glycol, J. Biol. Chem. 251 (1976), 6300

    Google Scholar 

  20. McPherson A. Jr., The growth and preliminary investigation of protein and nucleic acid crystals for X-ray diffraction analysis, Methods of Biochemical Analysis 23 (1976), 249–345

    Article  Google Scholar 

  21. McPherson A. Jr., “Preparation and analysis of protein crystals”, Wiley 1982

    Google Scholar 

  22. Thaller C., Weaver L.H., Eichele G., Wilson E., Karlsson R. and Jansonius J.N., Repeated seeding technique for growing large single crystals of proteins, J. Mol. Biol. 147 (1981), 465–469

    Article  Google Scholar 

  23. Gaykema W.P.J., Groendijk H., Doorten G., Vereijken J.M. and Hol W.G.J., Crystals containing a single subunit type of panulirus interruptus haemocyanin, J. Mol. Biol. 168 (1983), 197–201

    Article  Google Scholar 

  24. Kamphuis I.G., Kalk K.H., Swarte M.B.A. and Drenth J., The structure of papain refined at 1.65 Å resolution and comparison with related thiol proteases, J. Mol. Biol. 179 (1984), 233–256

    Article  Google Scholar 

  25. Kamphuis I.G., Drenth J. and Baker E.N., Thiol proteases. Comparative studies based on the high-resolution structures of papain and actinidin, and on amino acid sequence information for cathepsins B and H, and stem bromelain, J. Mol. Biol. 182 (1985), 317–329

    Article  Google Scholar 

  26. Schaick E.J.M. van, Schutter W.G., Gaykema W.P.J., Schepman A.M.H. and Hol W.G.J., Structure of Panulirus interruptus haemocyanin at 5 Å resolution, J. Mol. Biol. 158 (1982), 457–485

    Article  Google Scholar 

  27. Schierbeek A.J., Van der Laan J.M., Groendijk H., Wierenga R.K. and Drenth J., Crystallization and preliminary X-ray investigation of lipoamide dehydrogenase from Azotobacter vinelandii, J. Mol. Biol. 165 (1983), 563–564

    Article  Google Scholar 

  28. Littke W. and John Chr., Protein single crystal growth under micro-gravity, Journ. of Crystal Growth, 76 (1986), 663–672

    Article  Google Scholar 

  29. Littke W. and John Chr., Protein — Einkristallzüchtung im Mikrogravitationsfeld, Z. Flugwiss. Weltraumforsch. 6 (1982), 325–333

    Google Scholar 

  30. Blake C.C.F., Johnson L.N., Mair G.A., North A.C.T., Phillips D.C., Sarma V.R., Crystallographic studies of the activity of hen egg white lysozyme, Proc. R. Soc. London, Ser. B 167 (1967), 378–388

    Article  Google Scholar 

  31. Blundell T.L. and Johnson L.N., Protein crystallography, Academic Press 1976

    Google Scholar 

  32. De Lucas L.J., Suddath F.L., Snyder R., Naumann R., Broom M.B., Pusey M., Yost V., Herren B., Carter D., Nelson B., Meehan E.J., McPherson A. and Bugg C.E., Preliminary Investigations of Protein Crystal Growth using the Space Shuttle, Journal of Crystal Growth 76 (1986), 681–693

    Article  Google Scholar 

  33. Feigelson R.S., Proceedings of the First International Conference on Protein Crystal Growth at Stanford, USA, 14–16 August 1985, in Journal of Crystal Growth 76 (1986), 529–532

    Google Scholar 

  34. Baird J.K., Meehan E.J., Xidis A.L. and Howard S.B., Convective Diffusion in Protein Crystal Growth, Journal of Crystal Growth 76 (1986), 694–700

    Article  Google Scholar 

  35. Pusey M.L., Snyder R.S. and Naumann R., J. Biol. Chem. 261 (1986), 6524–6529

    Google Scholar 

  36. Proceedings of the First International Conference on Protein Crystal Growth, Stanford, USA, 14–16 August 1986 in Journal of Crystal Growth 76 (1986), 529–726

    Google Scholar 

  37. Bugg C.E., The Future of Protein Crystal Growth, Journal of Crystal Growth 76 (1986), 535–544

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 European Space Agency, Paris Cedex, France

About this chapter

Cite this chapter

Drenth, J., Helliwell, J.R., Littke, W. (1987). Crystal Growth of Biological Materials. In: Walter, H.U. (eds) Fluid Sciences and Materials Science in Space. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46613-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46613-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46615-1

  • Online ISBN: 978-3-642-46613-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics