Skip to main content

Abstract

A review of the chracterization of the environment encountered by an earth-orbiting spacecraft is presented. Of special relevance for microgravity experimentation is the quality of the gravitational environment that can be achieved in an orbiting spacecraft. There is a variety of disturbances resulting in accelerations precluding the spacecraft from ideal zero-gravity conditions. This may affect the results of various experiments as described in Chapter XVIII. The most dominant disturbances are discussed. Special attention is given to the gravitational environment of Spacelab and the planned Space Station. Other features of earth-orbit environment may be of interest to the experimentor as well. These are: radiation, atmospheric conditions, high energy particles, electric and magnetic fields. The high ratio of the orbital velocity to the mean thermal velocity of the atmospheric species, abundant at altitudes considered here, may be exploited to device extreme ultra high vacuum research facilities. Other characteristics, such as high energy particle flux may lead to experiment or sample degradation. This review provides the experimenter with the relevant information as a first basis for a more detailed analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Falk, G., Ruppel, W., “Mechanik, Relativität, Gravitation”, Springer-Verlag, Berlin 1973, pp. 302–304.

    Google Scholar 

  2. “Materials Sciences in Space”, ed. by Feuerbacher, B., Hamacher, H., Naumann, R.J., Springer-Verlag, Berlin 1986, Chapter 3, “Simulation of Weightlessness”, Hamacher, H., pp. 31–51.

    Book  Google Scholar 

  3. Bauer, H.F., “Environmental Effects on Microgravity Experiments”, ZfW 6 1982, pp. 184–194

    Google Scholar 

  4. Bauer, H.F., “Motion Trajectories of Particles Inside and Outside an Orbiting Space Shuttle”, ZfW 10 (1986), pp. 22–23

    MATH  Google Scholar 

  5. Perrine, B.S., “Dynamic Behaviour of Particles in Spacecraft”, Proc. NASA Workshop “Spacecraft Dynamics as Related to Laboratory Experiments in Space”, NASA Conf. Publ. 2199, 1979, pp. 137–146

    Google Scholar 

  6. Perrine, B.S., “A Method of Soft Tether Station Keeping”, NASA TM X–53643, 1967

    Google Scholar 

  7. Garriott, O.K., “Free Floating Experiments in Orbiter and Space Station”, NASA Workshop “Measurements and Characterization of the Acceleration Environment Onboard the Space Station”, Guntersville AL, Aug. 11–14, 1986

    Google Scholar 

  8. Alexander, J.I.D., Lundquist, C.A., “Motions in Fluids Caused by Microgravitational Acceleration and Their Modification by Relative Rotation”, AIAA-87–0312, AIAA 25th Aerospace Sciences Meeting, Reno Nev, Jan. 12–15, 1987

    Google Scholar 

  9. Ladner, J.E., Ragsdale, G.C., “Earth Orbital Satellite Lifetime”, NASA TN-D-1995, 1964

    Google Scholar 

  10. Vaughan, W.W., “Natural Environment Design Criteria for the Space Station Definition and Preliminary Design (First Revision)”, NASA TM-86460, 1984

    Google Scholar 

  11. “Low Acceleration Characterization of Space Station Environment”, Teledyne Brown Engineering, Huntsville AL, Sp 85–2928, Final Report, Revision B, 1985

    Google Scholar 

  12. “Spacelab Payload Accommodation Handbook”, Nasa, Spl/ 2104, Main Vol., Issue 2, Revision 0, 1985

    Google Scholar 

  13. Eilers, D., “mikrogravitationsbedingungen orbitaler Plattformen”, DGLR-Jahrestagung, Munich, October 17–19, 1983

    Google Scholar 

  14. Olson, R.E., Mockovciak, J., “Operational Factors Affecting Microgravity Levels in Orbit”, J. Spacecraft, 18, 1981, pp. 141–144

    Article  Google Scholar 

  15. “Space Station Reference Configuration Description”, NASA-TM-87493, 1984, p. 187

    Google Scholar 

  16. Staff of Space Dept. Johns Hopkins Univ./ Guidance and Control Lab Stanford Univ., “A Satellite Freed of all but Gravitational Forces: TRIAD I”, J. Spacecraft, 11, 1974, pp. 637–644

    Google Scholar 

  17. Lange, B., “The Drag-Free Satellite”, AIAA J., 2, 1964, pp. 1590–1606

    Article  MATH  Google Scholar 

  18. Smith, R.E., Weidner, D.K., “Space Environment for Use in Space Vehicle Development”, NASA TM X-53, 1968, p.798

    Google Scholar 

  19. Gans, R.F., “Effects of Spacecraft Motions on Fluid Experiments”, Proc. NASA Workshop “Spacecraft Dynamics as Related to Laboratory Experiments in Space”, NASA Conf. Publ. 2199, 1979, pp. 96–102

    Google Scholar 

  20. Naumann, R.J., “Susceptibility of Materials Processing Experiments to Low-Level Accelerations”, Proc. NASA Workshop “Spacecraft Dynamics as Related to Laboratory Experiments in Space”, NASA Conf. Publ. 2199, 1979, pp. 63–68

    Google Scholar 

  21. Hamacher, H., Jilg, R., Merbold, U. “Analysis of Microgravity Measurements Performed During D-1”, paper SI.4, 6th European Symp. “Materials Sciences under Microgravity Conditions”, Bordeaux (France), Dec. 2–5, 1986

    Google Scholar 

  22. Bendat, J.S., Piersch, A.G., “Measurement and Analysis of Random Data”, J. Wiley, New York, 1966, pp. 22–25

    MATH  Google Scholar 

  23. Jones, D.I., Owens, A.R., Owen, R.G., “A Microgravity Isolation Mount”, IAF-86–270, 37th IAF Congress, Innsbruck, Austria, Oct. 4–11, 1986

    Google Scholar 

  24. Harnacher, H., Merbold, U., “The Microgravity Environment of the Material Science Double Rack During Spacelab-1”, Proc. “AIAA Shuttle Environment and Operations II Conf.”, Houston TEX, Nov. 13–15, 1985, pp. 228–238

    Google Scholar 

  25. Hamacher, H., Feuerbacher, B., Jilg, R., “Analysis of Microgravity Measurements in Spacelab”, Proc. “15th Int. Symp. Space Technology and Science”, Tokyo 1986, p. 2087–2097

    Google Scholar 

  26. “Opportunities for Academic Research in a Low-gravity Environment”, ed. by Hazelrigg, G.A., Reynolds, J.M., AIAA, New York 1986, Chapter 1, “Facilities and Programs for Research in a Low-Gravity Environment”, Halpern, R.E., pp. 1–35

    Google Scholar 

  27. Malmejac, Y., Walter, H.U., “Materials Science Research with Sounding Rockets”, ESA MAT (79) 5 Rev. 1, 1980

    Google Scholar 

  28. Handbook for Space Processing Sounding Rocket Science Payloads, NASA-MSFC M-EH-75–2, 1975

    Google Scholar 

  29. Space Processing Applications Rocket (SPAR) Project, SPAR IX Final Report, NASA TM 82 549, 1984

    Google Scholar 

  30. Avduyevsky, V.S. (Editor), “Scientific Foundations of Space Manufacturing”, MIR Publishers, Moscow, 1984

    Google Scholar 

  31. “JSC Reduced Gravity Aircraft Users Guide”, NASA JSC-17 385, 1981

    Google Scholar 

  32. Bajuzick, R.J., Evans, N.D., Hofmeister, W.H., Robinson, M.B., “Microgravity Containerless Processing in Long Drop Tubes”, Proc. “Second Symposium on Space Industrialization”, NASA Conf. Publ. 2313, 1984, pp. 243–259

    Google Scholar 

  33. “Materials Sciences in Space”, edited by Feuerbacher, B., Hamacher, H., Naumann, R.J., Springer 1986, Chapter 12 “Containerless Processing Technology”, Naumann, R.J., Elleman, D.D., pp. 294–313

    Book  Google Scholar 

  34. “The Shuttle Environment”. Proc. of the Engin. Foundation Conference — Space Shuttle Experiment and Environment Workshop. Aug. 1984. Ed. T.D. Wilkerson, M. Lauriente, G. W. Sharpe. Publ. Engin. Foundation, U.S.A. (ISBN Number 0–939204-28–2)

    Google Scholar 

  35. “ENVIRONET”. Shuttle Environment Data Base. Contact: Code 614, NASA Goddard Spaceflight Center, Greenbelt, MD 20771. (301)-344–7596

    Google Scholar 

  36. F.S. Johnson. “Solar Radiation” in “Satellite Environment Handbook”. Ed. F.S. Johnson, Stanford Univ. Press, p. 95–105, (1965)

    Google Scholar 

  37. H. Neckel and D. Labs. “Improved Data of Solar Spectral Irradiance from 0.33 to 1.25 Microns”. Sol. Phys., 74, p. 231–249, (1981)

    Article  Google Scholar 

  38. D.A. Crommelynck, R.W. Brusa and V. Domingo. “Results of the Solar Constant Experiment Aboard Spacelab 1”. Sol. Phys., 107, p. 1–9, (1986)

    Article  Google Scholar 

  39. P.C. Simon. “Solar Irradiance Between 120 and 400 nM. and Its Variations”. Sol. Phys., 74, p. 273–291, (1981)

    Article  Google Scholar 

  40. G. Schmidtke. “Solar Irradiance Below 120 nM. and Its Variations”. Sol. Phys., 74, p. 251–263, (1981). Special Symposium Issue ‘Physics of Solar Variations’. D. Reidel. (1981)

    Article  Google Scholar 

  41. E.V.P. Smith and D.M. Gottlieb. “Solar Flux and Its Variations”. Space Sci. Rev. 16, N°5, p. 771–802, (1974)

    Article  Google Scholar 

  42. F.S. Johnson. “Thermal Radiation from the Earth”, in “Satellite Environment Handbook”. p. 143. Standford Univ. Press (1965)

    Google Scholar 

  43. J.W. Chamberlain. “Physics of the Aurora and Airglow”. Acad. Press. N.Y. (1961)

    Google Scholar 

  44. S. Chakrabarti and S. Bowyer. “The Space Shuttle’s Far Ultraviolet Environment’. in Proc. AIAA ‘Shuttle Environment and Operations II Conference”. (Nov.,1985) p.88

    Google Scholar 

  45. F.J. Rich. Proc. of Air Force Geophys. Lab. Workshop. “Natural Charging of Large Space Structures in Near-Earth Polar Orbit”. Sept. 1982. AFGL-TR-83–0046, (Paper 825). p. 29–56

    Google Scholar 

  46. L. Anselmo and B. Bertotti. “Orbital Perturbations due to Radiation Pressure for a Spacecraft of Complex Shape”. Celestial Mechanics, 29, No. 1, p. 27, (1983)

    Article  MATH  Google Scholar 

  47. J.H. Fu and G.R. Graves. “Thermal Environments for Space Shuttle Payloads”. in AIAA Shuttle Environment and Operations II Conference Proceedings. p. 18. (Nov. 1985.)

    Google Scholar 

  48. Solar Mirror Furnace, Preliminary Design Study. Dornier Systems Report. DS ERT-21–79. October, 1979

    Google Scholar 

  49. J. Miller and K. Thompson. “Meteorology”. (3rd Ed.) C.E. Merrill Publ. Co. (1979), p.5

    Google Scholar 

  50. D.L. Johnson. “Global Matrix of Thermospheric Density Values for Selected Solar/Geomagnetic Conditions and Spacecraft Orbital Altitudes”. NASA — Tech. Memo. TM-86478, (Dec. 1984)

    Google Scholar 

  51. A.E. Hedin. “A Revised Thermospheric Model Based on Mass Spectrometer and Incoherent Scatter Data: MSIS-83”. J. Geophys. Res., 88, p. 170–188, (1983)

    Google Scholar 

  52. L.J. Leger, J.T. Visentine, J.A. Schliesing. “A Consideration of Atomic Oxygen Interactions with the Space Station”. Proc. A.I.A.A. 23rd Aerospace Sciences Meeting, Jan. 1985. AIAA (85–0476)

    Google Scholar 

  53. L. Leger, “Surface Erosion”, p. 328–342 in “Space Shuttle Environment”. Proc. Space Shuttle Experiment and Environment Workshop. Aug. 1984. Ed: T.D. Wilkerson, M. Lauriente, G.W. Sharp. Publ. Engineering Foundation, ISBN 0–939204-28–2

    Google Scholar 

  54. P.M. Banks and P.R. Williamson. “Space Shuttle Glow Observations”. Geophys. Res. Lett., 10, No. 2, p. 118, Feb. 1983

    Article  Google Scholar 

  55. S.B. Mende, O.K. Garriott, P.M. Banks. “Observations of Optical Emission on STS-4”. Geophys. Res. Lett., 10, No. 2, p. 122–125, Feb. 1983

    Article  Google Scholar 

  56. G.R. Swenson, S.B. Mende, K.S. Clifton. “RAM Vehicle Glow Spectrum; Implication of NO2 Recombination Continuum”. Geophs. Res. Lett. 12, p. 97–100, (1985)

    Article  Google Scholar 

  57. J.H. Yee and V.J. Abreu. “Visible Glow Induced by Spacecraft Environment Interaction”. Geophys. Res. Lett., 10, No. 2, p. 126, Feb. 1983

    Article  Google Scholar 

  58. J.H. Yee, V.J. Abreu, and A. Dalgarno. “The Atmosphere Explorer Optical Glow near Perigee Altitudes”. Geophys. Res. Lett. 12, p. 651–654, (1985)

    Article  Google Scholar 

  59. M.J. Engebretson and A.E. Hedin. “DE-2 Mass Spectrometer Observations relevant to the Shuttle Glow”. Geophys. Res. Lett. 13, p. 109–112, (1986)

    Article  Google Scholar 

  60. P.T. Newell. “Review of the Critical Ionization Velocity Effect in Space”. Rev. of Geophys. 23, p. 93–104, (1985)

    Article  Google Scholar 

  61. L.T. Melfi et al., “Molecular Shield: An Orbiting Low Density Materials Laboratory”. J. Vac. Sci. Techn., 13, (1976), and Proc. XXVII. Int. Astronaut. Congress, Anaheim, Oct. 1976

    Google Scholar 

  62. U. von Zahn and E. Wulf. “The Gaseous Environment of the Shuttle, as observed by Mass Spectrometer inside the Payload Bay of the Shuttle Orbiter”. p. 75–78. Proc. of AIAA Shuttle Environment and Operations Conf. (Nov. 1985)

    Google Scholar 

  63. D.E. Hunton and J.M. Calo. “Gas Phase Interactions in the Shuttle Environment”. Idem. 1985p. 1

    Google Scholar 

  64. D. McKeown, J.A. Fountain, V.H. Cox, R.V. Petersen. “Analysis of Temp. Controlled Quartz Crystal Microbalance Surface Contamination Adsorbed during the Spacelab 1 (STS-9) Mission”. Idem.1985 p. 108–115

    Google Scholar 

  65. E. Wulf and U. von Zahn. “The Shuttle Environment: Effects of Thruster Firings on Gas Density and Composition in the Payload Bay”. J. Geophys. Res. 91, N° A3, p. 3270–3278, (1986)

    Article  Google Scholar 

  66. H.K.F. Ehlers, S. Jacobs, L.J. Leger and E. Miller. “Space Shuttle Contamination Measurements from Flights STS-1 and STS-4”. J. Spacecraft and Rockets, 21, p. 301, (1984)

    Article  Google Scholar 

  67. D.H. Smith and T.l. Page. “Spacelab 2: Science in Orbit”. Sky and Telescope, p. 438, (Nov. 1986)

    Google Scholar 

  68. G.E. Caledonia, J.C. Person, D.E. Hastings. “The Interpretation of Space Shuttle Measurements of Ionic Species”. J. Geophys. Res., 92, p. 273–281, (Jan. 1987)

    Article  Google Scholar 

  69. R. Narcisi et al. “Gaseous and Plasma Environment Around the Space Shuttle”. A.I.A.A. Meeting on Shuttle Environment. AIAA-83–2659-CP, (1983)

    Google Scholar 

  70. G.B. Murphy, S.D. Shawhan, L.A. Frank, N. D’Angelo, D.A. Gurnett, J.M. Grebowsky, D.L. Reasoner, N. Stone. “Interaction of the Space Shuttle with the Ionospheric Plasma”. Proc. Symp. “Spacecraft — Plasma Interactions and their Influences on Field and Particle Measurements”. ESA-SP 198, (Dec. 1983)

    Google Scholar 

  71. P. Ingesoy, B.N. Maehlum, J. Troim, J.P. Lebreton. “Plasma Energization in the Shuttle Wake Region during Beam Injection from Spacelab”. Planet. Space Sci. 34, p. 555–562, (1986)

    Article  Google Scholar 

  72. S.D. Shawhan and G.B. Murphy. “Measurements of STS-3 Electromagnetic Interference by the OSS-1 Plasma Diagnostics Package”. J. Spacecraft and Rockets (Special STS-3 Issue) (1983)

    Google Scholar 

  73. L.R. Lyons and D.J. Williams. “Quantitative Aspects of Magnetospheric Physics”. D. Reidel (Holland). Geophys. and Astrophys. Monographs. 1984

    Google Scholar 

  74. J.K. Hargreaves. “The Upper Atmosphere and Solar-Terrestrial Relations”. Van Nostran Reinhold. 1979

    Google Scholar 

  75. N.W. Peddie and E.B. Fabiano. “A Model of the Geomagnetic Field for 1975”. J. Geophys. Res. 81, p. 2539–2542, (1976)

    Article  Google Scholar 

  76. H. Garrett. “Surface Integrations” p. 197–213. “The Shuttle Environment”. Ed. T.D. Wilkerson, M. Lauriente, G.W. Sharp. Publ. Engineering Foundation U.S.A. (1985)

    Google Scholar 

  77. R.A. Langel and R.H. Estes. “The Near-earth Magnetic Field at 1980, Determined from Magsat Data”. J. Geophys. Res., 90, No. B3, p. 2495–2509, (Feb. 1985)

    Article  Google Scholar 

  78. N.C. Maynard. “Electric Fields in the Ionosphere and Magnetosphere”. NASA Tech. Memo. TM-X-65596. (June 1971)

    Google Scholar 

  79. R. Grard, K. Knott, A. Pedersen. “Interactions between a Large Body and its Environment in a Low Polar Orbit”. Proc. of Air Force Geophys. Lab. Workshop. “Natural Charging of Large Space Structures in Near Earth Polar Orbit”. Sept. 1982. AFGL-TR-83–0046. No. 825, p. 175–184, (1983)

    Google Scholar 

  80. S.D. Shawhan and G.B. Murphy. STS-3 Plasma Diagnostics Package Measurements of Orbiter Generated V x B Potentials and Electrostatic Noise. Idem. 1983 p. 119–123

    Google Scholar 

  81. A.G. Rubin and A.L. Besse. “Shuttle Orbiter Charging in Polar Earth Orbit”. Idem. p. 253–263 (1983)

    Google Scholar 

  82. H.B. Garrett. “The Charging of Spacecraft Surfaces”. Rev. Geophys. and Space Phys. 19, p. 577–616, (1981)

    Article  Google Scholar 

  83. S.D. Drell, H.M. Foley and M.A. Ruderman. “Drag and Propulsion of Large Satellites in the Ionosphere”. An Alfven Propulsion Engine in Space. J. Geophys. Res., 70, p. 3131–3145, (1965)

    Article  MathSciNet  Google Scholar 

  84. E.C. Whipple. “An Overview of Charging of Large Space Structures in Polar Orbit”. p. 11–28. Proc. Air Force Geophys. Lab. Workshop “Natural Charging of Large Space Structures in near Earth Polar Orbit.” Sept. 1982. AFGL- TR-83–0046.N°825

    Google Scholar 

  85. D.B. Beard and F.S. Johnson“. Charge and Magnetic Field Interaction with Satellites”. J. Geophys. Res. 65, p. 1–7, (1960)

    Article  Google Scholar 

  86. C.K. Chu and R.A. Gross. “Alfven Waves and Induction Drag on Long Cylindrical Satellites”. AIAA. Journal, 4, p. 2209–2214, (1966)

    Article  Google Scholar 

  87. M. Kasha, “The Ionosphere and Its Interaction with Satellites”, p. 100. Gordon and Beach, London. (1969)

    Google Scholar 

  88. C.E. Fichtel, Proc. Tenth Intl. Cosmic Ray Conf., Calgary, (1967), p.231

    Google Scholar 

  89. D.F. Smart and M.A. Shea. “Cosmic Ray Exposure Factors for Shuttle Altitudes derived from Calculated Cut-off Rigidities”. Adv. Space Res. 4, No. 10, 161–164,(1984)

    Article  Google Scholar 

  90. R. Silberg, C.H. Tsao, J.H. Adams, J.R. Letaw. “Let-Distribution and Doses of HZE Radiation Components at Near- earth Orbits”. Adv. Space Res., 4, No. 10, p. 143–151 (1984)

    Article  Google Scholar 

  91. T.A. Parnell, J.W. Watts, G.J. Fishman, E.V. Benton, A.L. Frank, J.C. Gregory. “The Measured Radiation Environment within Spacelab 1 and 2 and Comparison with Predictions”. To be published in “Advances in Space Research”, Pergamon Press, 1987

    Google Scholar 

  92. E.V. Benton. “Summary of Current Radiation Dosimetry Results on Manned Spacecraft”. Adv. Space Res., 4, No. 10, p. 153–160 (1984) and in Cospar Proceedings, Paper VII 7, (1986)

    Article  Google Scholar 

  93. P.D. Mccormack, “Radiation Dose and Shielding for the Space Station”. Paper, IAF/IAA-86–380. Proc. 37 Congress of the IAF Insbruck, (Oct. 1986)

    Book  Google Scholar 

  94. H.Y. Tada, J.R. Carter, B.E. Anspaugh, R.G. Downing. Solar Cell Radiation Handbook. Third Edition. NASA JPL 82–69. Nov. 1982

    Google Scholar 

  95. W. Heinrich. “Propagation of a High Energy Heavy Ion Beam through Matter”. Radiation Effects, 40, p. 167–171, (1979)

    Article  Google Scholar 

  96. G.J. Bruckner, O. van Gunzen, E.G. Stassinopoulos, P. Shapiro, L.S. August, T.M. Jordan. “Recovery of Damage in Rad-Hard MOS Devices during and after Irradiation by Electrons, Protons, Alphas, and Gamma Rays”. IEEE Trans. Nucl. Sci., NS-30, p. 4157–4161, (1983)

    Article  Google Scholar 

  97. K.E. Martin, M.K. Gauthier, J.R. Cross, A.R.V. Dantas, W.E. Price. “Total Dose Radiation Effects for Semiconductor Devices” 1985. Supplement. Vol. 1 (Oct. 15, 1985), Vol. II (May 15, 1986) A and B. JPL Publication 85–43

    Google Scholar 

  98. J.H. Adams, Jr., R. Silberberg, C.H. Tsao. “Cosmic Ray Effects on Microelectronics, Part 1: The Near Earth Particle Environment”. U.S. Naval Res. Lab. Memorandum Rep. 4506, Aug. (1981)

    Google Scholar 

  99. T.C. May and M.H. Woods. “Alpha Particle Induced Soft Errors in Dynamic Memories”. IEEE Trans. Electron Devices, ED-26, (1) p. 2–9, (1979)

    Article  Google Scholar 

  100. J.H. Adams,Jr. “The Natural Radiation Environment Inside Spacecraft”. IEEE Trans. Nucl. Sci., NS-29, p. 2095, (1982)

    Article  Google Scholar 

  101. E.L. Petersen. “Single Event Upsets in Space: Basic Concepts”. Tutorial Course at the IEEE Nuclear and Space Radiation Effects Conference, Gatlinburg, July 17, 1983. IEEE Trans. Nucl. Sci. NS-30, (1983)

    Google Scholar 

  102. J.W. Corbett. “Electron Radiation Damage in Semiconductors and Metals”. Acad. Press, N. York, 1966.

    Google Scholar 

  103. and, E.J. Kobetich and R. Katz “Energy Deposition by Electron Beams and γ-rays”. Phys. Rev. 170, p. 391, (1968)

    Article  Google Scholar 

  104. J.F. Ziegler and W.A. Lanford. “Effects of Cosmic Rays on Computer Memories”. Science, 206, p. 776, (1979)

    Article  Google Scholar 

  105. E.L. Petersen. “Nuclear Reactions in Semiconductors”. IEEE Trans. Nucl. Sci. NS-27, (1980).

    Google Scholar 

  106. and, P.J. McNulty, G.E. Farrell, W.P. Tucker. “Proton Induced Nuclear Reactions in Silicon”. IEEE Trans. Nucl. Sci. NS-28, p. 4007–4012, (1981)

    Article  Google Scholar 

  107. G.L. Brucker, W. Chater, W.A. Kolanski. “Simulation of Cosmic Ray Induced Soft Errors in CMOS/SOS Memories”. IEEE Trans. Nucl. Sci. NS-27, p. 1491–1493. (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 European Space Agency, Paris Cedex, France

About this chapter

Cite this chapter

Hamacher, H., Fitton, B., Kingdon, J. (1987). The Environment of Earth-Orbiting Systems. In: Walter, H.U. (eds) Fluid Sciences and Materials Science in Space. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46613-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46613-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46615-1

  • Online ISBN: 978-3-642-46613-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics