Skip to main content

Semi-Infinite Programming Duality: How Special is It?

  • Conference paper
Semi-Infinite Programming and Applications

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 215))

Abstract

In this article we describe and compare some frameworks within which semi-infinite programming duality theory can be studied. The emphasis is on abstract duality and reduction theorems for infinite systems.

Research partially supported by NSERC Grant A5116.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bazaraa, M.S., and C.M. Shetty: Nonlinear Programming. New York: John Wiley, 1979.

    Google Scholar 

  2. Ben-Tal, A., A. Ben-Israel, and E. Rosinger: A Helly-type theorem and semi-infinite programming. Constructive Approaches to Mathematical Models. New York: Academic Press (1979), 127–135.

    Google Scholar 

  3. Ben-Tal, A., M. Teboulle, and J. Zowe: Second order necessary optimality conditions for semi-infinite programming problems. Semi-Infinite Programming (edited by R. Hettich). Springer-Verlag, 1979.

    Google Scholar 

  4. Blair, C.E.: A note on infinite systems of linear inequalities in Rn. J. Math. Anal. and Appl. 48(1) (1974), 150–154.

    Article  Google Scholar 

  5. Blair, C.E.: A survey of ascent ray results and their applications. This Proceedings.

    Google Scholar 

  6. Blair, C.E., R.J. Duffin, and R.G. Jeroslow: A limiting infisup theorem. To appear in JOTA.

    Google Scholar 

  7. Borwein, J.M.: Adjoint process duality. To appear in Math of Operations Research.

    Google Scholar 

  8. Borwein, J.M.: Direct theorems in semi-infinite convex programming. Math. Programming 21 (1981), 301–318.

    Article  Google Scholar 

  9. Borwein, J.M.: A note on perfect duality and limiting Lagrangeans. Math. Programming 18 (1980), 330–337.

    Article  Google Scholar 

  10. Borwein, J.M.: A Lagrange multiplier theorem and a sandwich theorem for convex relations. Math. Scand 48 (1981), 189–204.

    Google Scholar 

  11. Borwein, J.M.: Weak tangent cones and optimization in Banach spaces. SIAM J. Control Optimization 16 (3)(1978), 512–522.

    Article  Google Scholar 

  12. Borwein, J.M.: Convex relations in analysis and optimization. Generalized Concavity in Optimization and Economics. New York: Academic Press (1981), 335–377.

    Google Scholar 

  13. Borwein, J.M.: The limiting Lagrangian as a consequence of Helly’s Theorem. J.O.T.A. 33 (4)(1981), 497–513.

    Article  Google Scholar 

  14. Charnes, A., W.W. Cooper, and K.O. Kortanek: Duality in semi-infinite programs and some works of Haar and Caratheodory. Management Science 9 (1963), 209–229.

    Article  Google Scholar 

  15. Charnes, A., W.W. Cooper, and K.O. Kortanek: On representations of semi-infinite programs which have no duality gaps. Management Science 12 (1965), 113–121.

    Article  Google Scholar 

  16. Clarke, F.H.: Generalized gradients and applications. Trans. Amer. Math. Soc. 205 (1975), 245–262.

    Article  Google Scholar 

  17. Craven, B.D.: Mathematical Programming and Control Theory. London: Chapman and Hall, 1978.

    Book  Google Scholar 

  18. Cybenko, G. Affine minimax problems and semi-infinite programming. To appear.

    Google Scholar 

  19. Day, M.M.: Normed linear spaces, 3rd edition. Springer-Verlag, 1973.

    Google Scholar 

  20. Duffin, R.J. Convex analysis treated by linear programming. Mathematical Programming 4 (1973), 125–143.

    Article  Google Scholar 

  21. Duffin, R.J. and R.G. Jeroslow: Lagrangean functions and affine minorants. Mathematical Programming Study 14 (1981), 48–60.

    Article  Google Scholar 

  22. Duffin, R.J. and L.A. Karlovitz: An infinite linear program with a duality gap. Management Science 12 (1965), 122–134.

    Article  Google Scholar 

  23. Duffin, R.J., L.A. Karlovitz and R.G. Jeroslow: Uniform duality in semi-infinite linear programming. To appear.

    Google Scholar 

  24. Eckhardt, U.: Theorems on the dimension of convex sets. Linear Algebra and its Applications 12 (1975), 63–76.

    Article  Google Scholar 

  25. Ekeland, I. and R. Temam: Convex Analysis and Variational Problems. Amsterdam: Nonth-Holland, 1976.

    Google Scholar 

  26. Fan, KY: Asymptotic cones and duality of linear relations. J. Appr. Theory 2 (1969), 152–159.

    Article  Google Scholar 

  27. Fiacco, A.V. and G.P. Mccormick: Nonlinear Programming: Sequential Unconstrained FLACHS, J.: Minimization Techniques. New York: John Wiley, 1968.

    Google Scholar 

  28. Saddle-point theorems for rational approximation. CSIR Technical Report, TWISK 219 (1981).

    Google Scholar 

  29. Glashoff, K.: Duality theory of semi-infinite programming. Semi-Infinite Programming (edited by R. Hettich). Springer-Verlag, 1979.

    Google Scholar 

  30. Guignard, M. Generalized Kuhn-Tucker conditions for mathematical programming in a Banach space. SIAM J. Control 7 (1969), 232–241.

    Article  Google Scholar 

  31. Gustafson, S.-A. and K. Kortanek: Numerical Solution of a class of semi-infinite programming problems. NRLQ 20 (1973), 477–504.

    Article  Google Scholar 

  32. Holmes, R.B.: Geometric Functional Analysis. New York: Springer-Verlag, 1975.

    Google Scholar 

  33. Ioffe, A.D.: Necessary and sufficient conditions for a local minimimum. SIAM J. Control Optimization 17 (1979), 245–288.

    Article  Google Scholar 

  34. Ioffe, A.D. Second-order conditions in nonlinear nonsmooth problems of semi-infinite programming. This proceedings.

    Google Scholar 

  35. Ioffe, A.D.: Regular points of Lipschitz functions. Trans. A.M.S. 251 (1979), 61–69.

    Article  Google Scholar 

  36. Jameson, G.J.: Ordered Linear Spaces. Lecture Notes in Math 141. New York; Springer-Verlag, 1970.

    Google Scholar 

  37. Jeroslow, R.G.: A limiting Lagrangian for infinitely-constrained convex optimization in Rn. J.O.T.A. 33 (1981), 479–495.

    Article  Google Scholar 

  38. Jeroslow, R.G.: Uniform duality in convex semi-infinite problems. To appear.

    Google Scholar 

  39. Karlin, S.J. and W.J. Studden: Tchebycheff Systems: with Applications in Analysis and Statistics. New York: John Wiley, 1966.

    Google Scholar 

  40. Karney, D.F. Asymptotic convex duality. To appear.

    Google Scholar 

  41. Karney, D.F.: Duality gaps in semi-infini te linear programming -an approximation problem. Math. Programming 20 (1981), 129–143.

    Article  Google Scholar 

  42. Klee, V.: The critical set of a convex body. American Journal of Mathematics 75 (1953), 178–188.

    Article  Google Scholar 

  43. Kortanek, K.O.: Constructing a perfect duality in infinite programming. Applied Mathematics and Optimization 3 (1977), 357–372.

    Google Scholar 

  44. Krabs, W.: Optimization and Approximation. New York: John Wiley, 1979.

    Google Scholar 

  45. Kretschmer, K.S.: Programming in paired spaces. Canadian J. Math. 16 (1961), 221–238.

    Article  Google Scholar 

  46. Lucas, R.E. and E.C. Prescott: A note on price systems in infinite dimensional space. International Economic Review 13 (1972), 416–422.

    Article  Google Scholar 

  47. Levine, P. and J.-Ch. Pomerol: Sufficient conditions for Kuhn-Tucker vectors in convex programming. SIAM J. Control Optimization 17 (1979), 689–699.

    Article  Google Scholar 

  48. Levinson, N.: A class of continuous linear programming problems. J. Math. Anal. Appl. 16 (1966), 73–83.

    Article  Google Scholar 

  49. Luenberger, D.G.: Optimization by Vector Space Methods. New York: John Wiley, 1969.

    Google Scholar 

  50. Maurer, H. and J. Zowe: Second order necessary and sufficient conditions for infinite dimensional programming problems. Math. Programming 16 (1979), 641–652.

    Article  Google Scholar 

  51. Moreau, J.J.: Fonctionelles convexes. Equation aux dérivées partielles. Séminaire J. Leray, College de France, 1966.

    Google Scholar 

  52. Mccormick, G.P.: Second order conditions for constrained minima. SIAM J. Applied Math. 15 (1967), 641–652.

    Google Scholar 

  53. Nakamura, T. and M. Yamasaki: Sufficient conditions for duality theorems in infinite linear programming problems. Hiroshima Math. J. 9 (1979), 323–334.

    Google Scholar 

  54. Penot, J.P.: Calcul sous-differential et optimisation. J. Funct. Anal. Appl. 27 (1978), 248–276.

    Article  Google Scholar 

  55. Pshenichnyi, B.N.: Necessary conditions for an extremum. New York: Marcel Dekker, 1971.

    Google Scholar 

  56. Ponstein, J.: On the use of purely finitely additive multipliers in mathematical programming, J.O.T.A. 33 (1981), 37–55.

    Article  Google Scholar 

  57. Rockafellar, R.T. and R.J.-B. Wets: The optimal recourse problem in discrete time, L -multipliers for inequality constraints. SIAM J. on Control and Optimization 16 (1978), 16–36.

    Article  Google Scholar 

  58. Rockafellar, R.T.: The Theory of Subgradients and its Applications to Problems of Optimization, Convex and Non-Convex Functions. Berlin: Helderman Verlag, 1981.

    Google Scholar 

  59. Rockafellar, R.T. Conjugate Duality and Optimization, Philadelphia: SIAM Publications, 1974.

    Book  Google Scholar 

  60. Rockafellar, R.T.: Helly’s theorem and minima of convex functions. Duke Mathematical Journal 32 (1965), 381–397.

    Article  Google Scholar 

  61. Rockafellar, R.T.: Convex Analysis. 1970. Princeton: Princeton Univ. Press,

    Google Scholar 

  62. Rogosinski, W.W.: Moments of non-negative mass. Proc. Roy. Soc. (London), Series A 245 (1958), 1–27.

    Article  Google Scholar 

  63. Rudin, W.: Functional Analysis. New York: McGraw-Hill, 1973.

    Google Scholar 

  64. Tus, S.H. and J.M. Borwein: Some generalizations of Caratheodory’s theorem via baycentres, with application to mathematical programming. Canad. Math. Bull. 23 (1980), 339–346.

    Article  Google Scholar 

  65. Yamasaki, M.: Duality theorems in mathematical programming and their applications. J. Sci. Hiroshima Univ. 30 (1968), 331–356.

    Google Scholar 

  66. Zowe, J.: Sandwich theorems for convex operators with values in an ordered vector space. J. Math. Anal. and Appl. 66 (1978), 292–296.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Borwein, J.M. (1983). Semi-Infinite Programming Duality: How Special is It?. In: Fiacco, A.V., Kortanek, K.O. (eds) Semi-Infinite Programming and Applications. Lecture Notes in Economics and Mathematical Systems, vol 215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46477-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46477-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12304-0

  • Online ISBN: 978-3-642-46477-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics