Skip to main content

Part of the book series: Encyclopedia of Physics / Handbuch der Physik ((PHYSIK 4,volume 4 / 21))

Abstract

Negative ions appear in gases under two circumstances: (1) they may be created in the gas largely through attachment of free electrons to atoms, molecules and rarely by dissociation of molecules in a polar phase by electron impact, (2) they may be introduced into the gas by interaction of fast particles of atomic mass with surfaces or by liberation from hot surfaces. Attachment of electrons causes loss of the former as ionizing agents, it leads to delayed and undesirable electronic ionizing events in asymmetrical field breakdown, to negative ion space charge action limiting current flow and it may act to increase the rate of loss of carriers by recombination. Negative ions from surfaces or filaments are the cause of destruction of oscilloscope screens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Thomson, J. J.: Phil. Mag. (VI) 13, 561 (1906)

    Google Scholar 

  2. Thomson, J. J.: Phil. Mag. 20, 752 (1910).

    Google Scholar 

  3. Arnot, F. L., and J. C. Milligan: Proc. Roy. Soc. Lond., Ser. A 156, 359, 538 (1936).

    Article  ADS  Google Scholar 

  4. Arnot, F. L.: Proc. Roy. Soc. Lond., Ser. A 158, 137 (1937).

    Article  ADS  Google Scholar 

  5. Arnot, F. L., and C. Beckett: Proc. Roy. Soc. Lond., Ser. A 168, 103 (1938).

    Article  ADS  Google Scholar 

  6. Sloane, R. H., and R. Press: Proc. Roy. Soc. Lond., Ser. A 168, 284 (1938).

    Article  ADS  Google Scholar 

  7. Sloane, R. H., and H. M. Love: Nature (Lond.) 159 (1947).

    Google Scholar 

  8. Sloane, R. H., and C. S. Watt: Proc. Phys. Soc. Lond. A 61, 217 (1948).

    Article  ADS  Google Scholar 

  9. Franck, J., u. W. Pohl: Verh. dtsch. phys. Ges. 12, 291, 613 (1910).

    Google Scholar 

  10. Townsend, J. S.: Electricity in Gases, p. 117ff. Oxford Press 1914.

    Google Scholar 

  11. Lattey, R. T., and H. T. Tizzard: Proc. Roy. Soc. Lond., Ser. A 86, 349 (1912).

    Article  ADS  Google Scholar 

  12. Kovarick, A. F.: Phys. Rev. 30, 415 (1910).

    ADS  Google Scholar 

  13. Wellisch, E. M.: Amer. J. Sci. 39, 583 (1915)

    Article  Google Scholar 

  14. Wellisch, E. M.: Amer. J. Sci. 44, 1 (1917).

    Article  Google Scholar 

  15. Wellisch, E. M.: Phil. Mag. 31, 186 (1916)

    Google Scholar 

  16. Wellisch, E. M.: Phil. Mag. 34, 33 (1917).

    Google Scholar 

  17. Loeb, L. B.: Phys. Rev. 17, 84 (1921).

    Article  ADS  Google Scholar 

  18. Loeb, L. B.: Proc. Nat. Acad. Sci. 7, 5 (1921).

    Article  ADS  Google Scholar 

  19. Thomson, J. J.: Phil. Mag. 30, 321 (1916).

    Google Scholar 

  20. Wahlin, H. B.: Phys. Rev. 19, 173 (1922).

    Article  ADS  Google Scholar 

  21. Loeb, L. B.: Phil. Mag. 43, 229 (1922).

    Google Scholar 

  22. Loeb, L. B.: J. Franklin Inst. 195, 45 (1924).

    Article  Google Scholar 

  23. Loeb, L. B.: Proc. Nat. Acad. Sci. 9, 335 (1923).

    Article  ADS  Google Scholar 

  24. Bailey, V. A.: Phil. Mag. 50, 825 (1925)

    Google Scholar 

  25. Bailey, V. A.: Phil. Mag. 9, 560, 625 (1930).

    Google Scholar 

  26. Lusk, H. F.: Master’s Thesis Univ. California, May 1927.

    Google Scholar 

  27. Cravath, A. M.: Phys. Rev. 34, 605 (1929).

    Article  ADS  Google Scholar 

  28. Bradbury, N. E.: Phys. Rev. 44, 885 (1933).

    Article  ADS  Google Scholar 

  29. Bradbury, N. E.:J. Chem. Phys. 2, 827, 840 (1934).

    Article  ADS  Google Scholar 

  30. Bradbury, N. E., and H. E. Tatel: J. Chem. Phys. 2, 835 (1934).

    Article  ADS  Google Scholar 

  31. For a complete discussion of later improvements of Bailey’s method see R. H. Healey and J. W. Reed, The Behaviour of Slow Electrons in Gases, Amalgameted Wireless Press (Australasia), Ltd. Sydney, 1941, pp. 24ff.

    Google Scholar 

  32. Geballe, R., and M. A. Harrison: Phys. Rev. 85, 372 (1952);

    Article  ADS  Google Scholar 

  33. Geballe, R., and M. A. Harrison: Phys. Rev. 91, 1 (1953).

    Article  ADS  Google Scholar 

  34. Doehring, A.: Z. Naturforsch. 7a, 253 (1952).

    ADS  Google Scholar 

  35. Hickam, W. M., and R. E. Fox: Seventh Annual Conf. on Gaseous Electronics, New York, Oct. 14 – 16, 1954, paper A—1.

    Google Scholar 

  36. Bradbury, N. E.: Phys Rev. 40, 980 (1932).

    Article  ADS  Google Scholar 

  37. Nielsen, R. A., and N.E. Bradbury: Phys. Rev. 49, 338 (1936)

    Google Scholar 

  38. Nielsen, R. A., and N.E. Bradbury: Phys. Rev. 51, 69 (1937).

    Article  ADS  Google Scholar 

  39. Nielsen, R. A.: Phys. Rev. 50, 950 (1936).

    Article  ADS  Google Scholar 

  40. For microwave techniques in general see S. C. Brown and D. J. Rose: J. Appl. Phys. 23, 711, 719, 1028 (1952). See also: Basic Processes of Gaseous Electronics, L. B. Loeb, chap. VI. Berkeley: Univ. of California Press 1955.

    Article  ADS  Google Scholar 

  41. Biondi, M. A.: Phys. Rev. 84, 1072 (1951)

    Article  Google Scholar 

  42. Biondi, M. A.: Phys. Rev. 89, 337 (1953).

    Google Scholar 

  43. Varnerin, L. J.: Phys. Rev. 84, 563 (1951).

    Article  ADS  Google Scholar 

  44. Herreng, P.: Cahiers de Phys. 38, 7 (1952).

    Google Scholar 

  45. Loeb, L. B.: Phys. Rev. 48, 684 (1935). See also: Basic Processes of Gaseous Electronics, loc. cit. chap. V.

    Article  ADS  Google Scholar 

  46. Branscomb, L. M., and W. L. Fite: Phys. Rev. (A) 93, 647 (1954).

    Article  Google Scholar 

  47. Branscomb, L. M., and S. J. Smith: Nat. Bur. Stand. Technical Report No. 4073, 1 May 1955, to appear in Phys. Rev. 1955. — Full report in Bur. Stand. J. Res., about Oct. 1955.

    Google Scholar 

  48. Bates, D. R.: Proc. Roy. Irish. Acad. A 51, 153 (1947).

    Google Scholar 

  49. Loeb, L. B.: Fundamental Processes in Electrical Discharge in Gases, p 289. New. York: McGraw-Hill 1939.

    Google Scholar 

  50. Bloch, F., and N. E. Bradbury: Phys. Rev. 48, 689 (1935).

    Article  ADS  MATH  Google Scholar 

  51. Thomson, J. J.: Rays of Positive Electricity, pp.27, 70, 227. London: Longman’s Green & Co. 1921.

    Google Scholar 

  52. Richardson, O. W.: Emission of Electricity from Hot Bodies, pp. 92–95, 244. London: Longman’s Green & Co. 1916.

    Google Scholar 

  53. Massey, H. S. W., and R.A. Smith: Proc. Roy. Soc. Lond., Ser. A 155, 473 (1936).

    ADS  Google Scholar 

  54. Massey, H. S. W.: Negative Ions, second edit., p. 72. Cambridge: University Press 1950.

    Google Scholar 

  55. See also Massey, H. S. W., and E. H. S. Burhop: Electronic and Ionic Impact Phenomena, pp. 225ff., 249ff. Oxford: Clarendon Press 1952.

    MATH  Google Scholar 

  56. Alpert, D.: J. Appl. Phys. 24, 810 (1953).

    Article  ADS  Google Scholar 

  57. Alpert, D., and R. S. Buritz: J. Appl. Phys. 25, 202 (1954).

    Article  ADS  Google Scholar 

  58. Hagstrum, H. D.: Phys. Rev. 89, 338 (1953)

    Article  Google Scholar 

  59. Hagstrum, H. D.: Phys. Rev. 89, 244 (1953)

    Article  ADS  Google Scholar 

  60. Hagstrum, H. D.: Phys. Rev. 91, 541 (1953)

    Article  ADS  Google Scholar 

  61. Hagstrum, H. D.: Phys. Rev. 96, 325 (1954).

    Article  ADS  Google Scholar 

  62. Parker, J. H.: Phys. Rev. 93, 1148 (1954).

    Article  ADS  Google Scholar 

  63. Wehner, G. K.: Phys. Rev. 93, 633 (1954).

    Article  ADS  Google Scholar 

  64. Wehner, G. K.: J. Appl. Phys. 25, 270 (1954).

    Article  ADS  Google Scholar 

  65. Wehner, G. K., and G. Medicus: J. Appl. Phys. 25, 698 (1954).

    Article  ADS  Google Scholar 

  66. Tate, J. T., and W. W. Lozier: Phys. Rev. 42, 518 (1934).

    Google Scholar 

  67. Gutbier, H., u. H. Neuert: Z. Naturforsch. 9a, 335 (1954).

    ADS  Google Scholar 

  68. Mann, M. M., A. Hustralid and J. T. Tate: Phys. Rev. 58, 340 (1940).

    Article  ADS  Google Scholar 

  69. Lozier, W. W.: Phys. Rev. 36, 1417 (1930).

    Article  ADS  Google Scholar 

  70. Mueller, D. W., and H.D. Smyth: Phys. Rev. 38, 1920 (1931).

    Google Scholar 

  71. Bennett, W. H., and P. F. Darby: Phys. Rev. 49, 97 (1936).

    Article  ADS  Google Scholar 

  72. Schüler, H., L. Reinebeck u. A. Michel: Z. Naturforsch. 9a, 279 (1954).

    Google Scholar 

  73. Neuert, H.: Z. Naturforsch. 8a, 459 (1953).

    Google Scholar 

  74. Tuxen, O.: Z. Physik 103, 463 (1936).

    Article  ADS  Google Scholar 

  75. Stille, H.: Ann. Physik 17, 635 (1933).

    Article  ADS  Google Scholar 

  76. Bradley, R. C.: Phys. Rev. 93, 719 (1954).

    Article  ADS  Google Scholar 

  77. Thompson, J. S.: Phys. Rev. 38, 1389 (1931).

    Article  ADS  Google Scholar 

  78. Woodcock, K. S.: Phys. Rev. 38, 1696 (1931).

    Article  ADS  Google Scholar 

  79. Alvarez, L. W.: Rev. Sci. Instrum. 22, 705 (1951).

    Article  ADS  Google Scholar 

  80. Ardenne, M. v.: Arch. Elektrotechn. 29, 231 (1935).

    Article  Google Scholar 

  81. Levy, I., and D.H. West: J. Inst. Electr. Engrs. 79, 11 (1936).

    Google Scholar 

  82. Schaefer, H., u. W. Walcher: Z. Physik 121, 679 (1943).

    Article  ADS  Google Scholar 

  83. Muschlitz, E. E., J. H. Simons and coworkers, most of this very careful and significant work is in preparation for publication, presumably in J. Chem. Phys. 1955 and 1956. Advance data for this article by private communication to the writer by letter of Muschlitz, Aug. 1, 1955.

    Google Scholar 

  84. The technique in part is described by E. E. Muschlitz, T. L. Bailey, J. M. McGuire, J. Chem. Phys. 22, 2088 (1954).

    ADS  Google Scholar 

  85. For theory of formation of OH- see Laidler, K. J.: J. Chem. Phys. 22, 1740 (1954).

    Article  ADS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1956 Springer-Verlag OHG. Berlin · Göttingen · Heidelberg

About this chapter

Cite this chapter

Loeb, L.B. (1956). Formation of Negative Ions. In: Electron-Emission Gas Discharges I / Elektronen-Emission Gasentladungen I. Encyclopedia of Physics / Handbuch der Physik, vol 4 / 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45844-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45844-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45846-0

  • Online ISBN: 978-3-642-45844-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics