Skip to main content

Intracellular Calcium Mediating the Actions of Adenosine at Neuromuscular Junctions

  • Conference paper
Topics and Perspectives in Adenosine Research

Summary

This review summarizes the experimental evidence that adenosine derivatives inhibit acetylcho-line release by reducing the intracellular calcium affinity for a strategic component of the secretory apparatus in motor nerve endings. Theoretical curves based upon the calcium receptor model of evoked acetylcholine secretion are provided in support of this notion. The results described also suggest that acetylcholine release need not occur at the active zone to be inhibited by adenosine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Augustine GJ, Eckert R (1984) Divalent cations differentially support transmitter release at the squid giant synapse. J Physiol (Lond) 346:257–271

    PubMed  CAS  Google Scholar 

  2. Buckle PJ, Spence I (1982) The actions of adenosine and some analogues on evoked and potassium stimulated release at skeletal and autonomic neuromuscular junctions. Naunyn Schmiedebergs Arch Pharmacol 319:130–135

    Article  PubMed  CAS  Google Scholar 

  3. Ceccarelli B, Hurlbut WP (1980) Vesicle hypothesis of the release of quanta of acetylcholine. Physiol Rev 69:396–441

    Google Scholar 

  4. Dunwiddie TV (1985) The physiological role of adenosine in the central nervous system. Int Rev Neurobiol 27:63–139

    Article  PubMed  CAS  Google Scholar 

  5. Ginsborg BL, Hirst GDS (1972) The effect of adenosine on the release of the transmitter from the phrenic nerve of the rat. J Physiol (Lond) 224:629–645

    PubMed  CAS  Google Scholar 

  6. Heuser JE (1977) Synaptic vesicle exocytosis revealed in quick-frozen frog neuromuscular junctions treated with 4-aminopyrindine and given a single electrical shock. In: Cowan WM, Ferrendelli JA (eds) Approaches to the cell biology of the neuron. Society for Neurosciences Symposium, vol 2, pp 215–239

    Google Scholar 

  7. Kretsinger RH (1980) Crystallographic studies of calmodulin and homologs. Ann NY Acad Sci 356:14–19

    Article  PubMed  CAS  Google Scholar 

  8. Mellow AM, Perry BD, Silinsky EM (1982) Effects of calcium and strontium in the process of acetylcholine release from motor nerve endings. J Physiol (Lond) 328:547–562

    PubMed  CAS  Google Scholar 

  9. Ribeiro JA, Sebastiao AM (1985) On the type of receptor involved in the inhibitory action of adenosine at the neuromuscular junction. Br J Pharmacol 84:911–918

    PubMed  CAS  Google Scholar 

  10. Silinsky EM (1980) Evidence for specific adenosine receptors at cholinergic nerve endings. Br J Pharmacol 71:191–194

    PubMed  CAS  Google Scholar 

  11. Silinsky EM (1981) On the calcium receptor that mediates depolarization-secretion coupling at cholinergic motor nerve terminals. Br J Pharmacol 73:413–429

    PubMed  CAS  Google Scholar 

  12. Silinsky EM (1984) On the mechanism by which adenosine receptor activation inhibits the release of acetylcholine from motor nerve endings. J Physiol (Lond) 346:243–256

    PubMed  CAS  Google Scholar 

  13. Silinsky EM (1985a) The biophysical pharmacology of calcium-dependent acetylcholine secretion. Pharmacol Rev 37:81–132

    PubMed  CAS  Google Scholar 

  14. Silinsky EM (1985b) Calcium and transmitter release: modulation by adenosine derivatives. In: Rubin RP, Weiss GB, Putney JW Jr (eds) Calcium in biological system chap 13, Plenum, New York, pp 109–119

    Chapter  Google Scholar 

  15. Silinsky EM (1986) Inhibition of transmitter release by adenosine: Are calcium currents depressed or are the intracellular effects of calcium impaired? Trends Pharmacol Sci 7:180–185

    Article  CAS  Google Scholar 

  16. Silinsky EM, Ginsborg BL (1983) Inhibition of acetylcholine release from preganglionic frog nerves by ATP but not adenosine. Nature 305:327–328

    Article  PubMed  CAS  Google Scholar 

  17. Silinsky EM, Vogel SM (1986) Effects of an adenylate cyclase inhibitor on the electrophysio-logical correlates of neuromuscular transmission in the frog. Br J Pharmacol 88:799–805

    PubMed  CAS  Google Scholar 

  18. Zimmerberg J, Cohen FS, Finkelstein A (1980) Micromolar Ca2+ stimulates fusion of lipid vesicles with planar bilayers containing a calcium binding protein. Science 210:906–908

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Silinsky, E.M., Hirsh, J.K., Vogel, S.M. (1987). Intracellular Calcium Mediating the Actions of Adenosine at Neuromuscular Junctions. In: Gerlach, E., Becker, B.F. (eds) Topics and Perspectives in Adenosine Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45619-0_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45619-0_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45621-3

  • Online ISBN: 978-3-642-45619-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics