Skip to main content

Grundlagen der Modellbildung

  • Chapter
  • First Online:
Medizintechnische Systeme
  • 6023 Accesses

Zusammenfassung

Es wird ein grundlegender Überblick über die methodisch strukturierte Herangehensweise zur Modellierung von physiologischen Systemen gegeben. Nach der Kategorisierung von Methoden und Strukturen zur mathematischen Modellierung werden Beispiele für verschiedene physiologische Modelle vorgestellt. Zunächst werden allerdings fundamentale Begriffe eingeführt und der Bedarf von Modellen zur Beschreibung der menschlichen Körperfunktionen erläutert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literaturverzeichnis

  • 1. E. Carson und C. Cobelli, Eds., Modelling Methodology for Physiology and Medicine. Academic Press, 2001.

    Google Scholar 

  • 2. DIN IEC 60050-351:2014, Internationales Elektrotechnisches Wörterbuch - Teil 351: Leittechnik, 2014.

    Google Scholar 

  • 3. DIN 66201-1:1981-05, Prozeßrechensysteme; Begriffe [Norm zurückgezogen], 1981. 4. R. Isermann, Mechatronische Systeme, 2te ed. Springer Verlag Berlin-Heidelberg-New York, 2008.

    Google Scholar 

  • 5. W. Cannon, The Wisdom of the Body. W.W. Norton, 1932.

    Google Scholar 

  • 6. N. Wiener, Cybernetics, or Control and Communication in the Animal and the Machine. John Wiley and Sons, 1948.

    Google Scholar 

  • 7. R. Isermann, Identifikation dynamischer Systeme: Grundlegende Methoden, 2te ed. Springer Verlag Berlin-Heidelberg-New York, 1992.

    Google Scholar 

  • 8. L. Ljung, System Identification, 2te ed. PTR Prentice Hall, Upper Saddle River, N.J., 1999.

    Google Scholar 

  • 9. O. Nelles, Nonlinear System Identification. Springer Verlag Berlin-Heidelberg-New York, 2001.

    Google Scholar 

  • 10. B. Misgeld, “Automatic control of the heart-lung-machine,” Dissertation, Ruhr-Universität Bochum, 2007. http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/MisgeldBernoJohannesEngelbert/diss.pdf

  • 11. E. P. Hill, G. G. Power, und L. D. Longo, “A mathematical model of carbon dioxide transfer in the placenta and its interaction with oxygen.” Am J Physiol, Vol. 224, Nr. 2, S. 283–299, Feb 1973.

    Google Scholar 

  • 12. E. P. Hill, G. G. Power, und L. D. Longo, “Mathematical simulation of pulmonary O2 and CO2 exchange.” Am J Physiol, Vol. 224, Nr. 4, S. 904–917, Apr 1973.

    Google Scholar 

  • 13. E. P. Hill, G. G. Power, und L. D. Longo, “Kinetics of O2 and CO2 exchange,” in Bioengineering aspects of the lung, J. B. West, Ed. New York and Basel: Marcel Dekker Inc., 1977, S. 459–514.

    Google Scholar 

  • 14. M. Hexamer und J. Werner, “A mathematical model for the gas transfer in an oxygenator,” in Modelling and Control in Biomedical Systems, D. Feng und E. Carson, Eds., Melbourne, Australia, 2003, S. 409–414.

    Google Scholar 

  • 15. R. Schmidt, G. Thews, und F. Lang, Physiologie des Menschen. Springer Verlag Berlin-Heidelberg-New York, 2000.

    Google Scholar 

  • 16. G. R. Kelman, “Digital computer subroutine for the conversion of oxygen tension into saturation,” J Appl Physiol, Vol. 21, S. 1375–1376, 1966.

    Google Scholar 

  • 17. L. D. Pater, “An electrical analogue of the human circulatory system,” Dissertation, University of Groningen, 1966.

    Google Scholar 

  • 18. A. P. Avolio, “Multi-branched model of the human arterial system,” Med Biol Eng Comput, Vol. 18(6), S. 709–718, 1980.

    Google Scholar 

  • 19. H. Reul, H. Minamitani, und J. Runge, “A hydraulic analog of the systemic and pulmonary circulation for testing artificial hearts,” Proc. ESAO II, Vol. 2, S. 120–127, 1975.

    Google Scholar 

  • 20. J. Milsum, Ed., Biological Control System Analysis. McGraw-Hill - New York, 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berno J. E. Misgeld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Misgeld, B.J.E. (2016). Grundlagen der Modellbildung. In: Leonhardt, S., Walter, M. (eds) Medizintechnische Systeme. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41239-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41239-4_3

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41238-7

  • Online ISBN: 978-3-642-41239-4

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics