Skip to main content

PCR and Diagnosis of Tuberculosis

  • Chapter
Tuberculosis
  • 938 Accesses

Abstract

The current ‘gold standard’ for the identification of M. tuberculosis in clinical specimens is based on acid-fast microscopy of sputum Sediments or other specimens (AFB smears), followed by culture confirmation using definitive biochemical or DNA probe analyses. Although AFB smear results can be available within 1 day, they are only 50%–70% sensitive and do not distinguish between M. tuberculosis and other nontuberculosis mycobacteria that may be present in specimens. Traditional culture-based methodologies for the detection of M. tuberculosis require between 1 and 8 weeks to perform and often have low sensitivity when small numbers of organisms are analyzed (AFB smear-negative). In addition, culture-based drug-susceptibility testing requires several additional weeks to identify drug-resistant M. tuberculosis. These factors make patient diagnosis extremely difficult, and therefore, many patients are routinely started on treatment with minimal diagnostic information. This potentially results in postponing appropriate treatment and the failure to identify rapidly those patients who need to be isolated from the general population because they are harboring drug-resistant organisms. Therefore, the rapid and specific diagnosis of tuberculosis is one of the most pressing needs in the effort to control and eventually eradicate this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ahmed YH (1999) Detection of Mycobacterium tuberculosis complex and non-tuberculous mycobacteria by multiplex polymerase chain reactions. East Mediterr Health J 5:831

    PubMed  CAS  Google Scholar 

  • Almeda J et al (2000) Clinical evaluation of an in-house IS6110 polymerase chain reaction for diagnosis of tuberculosis. Eur J Clin Microbiol Infect Dis 19:859–867

    Article  PubMed  CAS  Google Scholar 

  • Banerjee A et al (1994) InhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263:227–230

    Article  PubMed  CAS  Google Scholar 

  • Bartfai Z et al (2001) Molecular characterization of rifampinresistant isolates of Mycobacterium tuberculosis from Hungary by DNA sequencing and the line probe assay. J Clin Microbiol 39:3736–3739

    Article  PubMed  CAS  Google Scholar 

  • Bennedsen J et al (1996) Utility of PCR in diagnosing pulmonary tuberculosis. J Clin Microbiol 34:1407–1411

    PubMed  CAS  Google Scholar 

  • Bergmann JS, Woods GL (1996) Clinical evaluation of the Roche AMPLICOR® PCR Mycobacterium tuberculosis test for detection of M. tuberculosis in respiratory specimens. J Clin Microbiol 34:1083–1085

    PubMed  CAS  Google Scholar 

  • Blanchard JS (1996) Molecular mechanisms of drug resistance in Mycobacterium tuberculosis. Annu Rev Biochem 65:215–239

    Article  PubMed  CAS  Google Scholar 

  • Boddinghaus B et al (1990) Detection and identification of mycobacteria by amplirication of rRNA. J Clin Microbiol 28:1751–1759

    PubMed  CAS  Google Scholar 

  • Bogard M et al (2001) Multicenter study of a commercial, automated polymerase chain reaction System for the rapid detection of Mycobacterium tuberculosis in respiratory specimens in routine clinical practice. Eur J Clin Microbiol Infect Dis 20:724–731

    PubMed  CAS  Google Scholar 

  • Borun M et al (2001) Detection of Mycobacterium tuberculosis in clinical samples using insertion sequences IS6110 and IS990. Tuberculosis (Edinb) 81:271–278

    Article  CAS  Google Scholar 

  • Bottger EC (1989) Rapid determination of bacterial ribosomal RNA sequences by direct sequencing of enzymatically amplified DNA. FEMS Microbiol Lett 53:171–176

    Article  PubMed  CAS  Google Scholar 

  • Bradford WZ et al (1996) The changing epidemiology of acquired drug-resistant tuberculosis in San Francisco, USA. Lancet 348:928–931

    Article  PubMed  CAS  Google Scholar 

  • Brisson-Noel A et al (1991) Diagnosis of tuberculosis by DNA amplirication in clinical practice evaluation. Lancet 338: 364–366

    Article  PubMed  CAS  Google Scholar 

  • Butler WR, Kilburn JO (1983) Susceptibility of Mycobacterium tuberculosis to pyrazinamide and its relationship to pyrazinamidase activity. Antimicrob Agents Chemother 24:600–601

    Article  PubMed  CAS  Google Scholar 

  • Cambau E et al (1994) Selection of a gyrA mutant of Mycobacterium tuberculosis resistant to fluoroquinolones during treatment with ofloxacin. J Infect Dis 170:1351

    Article  PubMed  CAS  Google Scholar 

  • Cave MD et al (1991) IS6110: conservation of sequence in the Mycobacterium tuberculosis complex and its utilization in DNA fingerprinting. Mol Cell Probes 5:73–80

    Article  PubMed  CAS  Google Scholar 

  • Clarridge JE III et al (1993) Large-scale use of polymerase chain reaction for detection of Mycobacterium tuberculosis in a routine mycobacteriology laboratory. J Clin Microbiol 31:2049–2056

    PubMed  Google Scholar 

  • Cockerill FR III (1999) Minireview: genetic methods for assessing antimicrobial resistance. Antimicrob Agents Chemother 43:199–212

    PubMed  CAS  Google Scholar 

  • Cohn DL, Bustreo F, Faviglione MC (1997) Drug-resistant tuberculosis: review of the worldwide Situation and the WHO/IUATLD global surveillance project. International Union against Tuberculosis and Lung Disease. Clin Infect Dis 24:S121–S130

    Article  PubMed  Google Scholar 

  • Cousins DV et al. (1992) Use of polymerase chain reaction for the rapid diagnosis of tuberculosis. J Clin Microbiol 30:255–258

    PubMed  CAS  Google Scholar 

  • Dalovisio JR et al (1996) Comparison of the amplified Mycobacterium tuberculosis (MTB) direct test, Amplicor® MTB PCR, and IS6I10-PCR for detection of MTB in respiratory specimens. Clin Infect Dis 23:1099–1108

    Article  PubMed  CAS  Google Scholar 

  • De Beenhouwer H et al (1995) Rapid detection of rifampicin resistance in sputum and biopsy specimens from tuberculosis patients by PCR and line probe assay. Tuber Lung Dis 76:425–430

    Article  PubMed  Google Scholar 

  • Delgado M, Telenti A (1996) Detection of fluoroquinolone resistance mutations in Mycobacterium tuberculosis. In: Persing D (ed) PCR protocols for emerging infectious diseases. ASM Press, Washington DC, pp 138–143

    Google Scholar 

  • Del Portillo P, Murillo LA, Patarroyo ME (1991) Amplification of a species-specific DNA fragment of Mycobacterium tuberculosis and its possible used in diagnosis. J Clin Microbiol 29:2163–2168

    PubMed  Google Scholar 

  • Desjardin LE et al (1996) Alkaline decontamination of sputum specimens adversely affects stability of mycobacterial mRNA. J Clin Microbiol 34:2435–2439

    PubMed  CAS  Google Scholar 

  • Desjardin LE et al (1998) Comparison of the ABI 7700 (TaqMan) and competitive PCR for quantification of IS6110 DNA in sputum during treatment of tuberculosis. J Clin Microbiol 36:1964–1968

    PubMed  CAS  Google Scholar 

  • Douglass J, Steyn LM (1993) A ribosomal gene mutation in streptomycin-resistant Mycobacterium tuberculosis isolates. J Infect Dis 167:1505–1506

    Article  PubMed  CAS  Google Scholar 

  • Eing BR et al (1998) Comparison of Röche COBAS AMPLICOR® Mycobacterium tuberculosis assay with in-house PCR and culture for detection of M. tuberculosis. J Clin Microbiol 36:2023–2029

    PubMed  CAS  Google Scholar 

  • Eisenach KD et al. (1990) Polymerase chain reaction amplification of a repetitive DNA sequence specific for Mycobacterium tuberculosis. J Infect Dis 161:977–981

    Article  PubMed  CAS  Google Scholar 

  • Eisenach KD et al (1991) Detection of Mycobacterium tuberculosis in sputum samples using a polymerase chain reaction. Am Rev Respir Dis 144:1160–1

    Article  PubMed  CAS  Google Scholar 

  • El-Hajj HH et al (2001) Detection of rifampin resistance in Mycobacterium tuberculosis in a Single tube with molecular beacons. J Clin Microbiol 39:4131–4137

    Article  PubMed  CAS  Google Scholar 

  • Felmlee TA et al (1995) Genotypic detection of Mycobacterium tuberculosis rifampin resistance: comparison of single-strand conformation polymorphism and dideoxy fingerprinting. J Clin Microbiol 33:1617–1623

    PubMed  CAS  Google Scholar 

  • Finken M et al (1993) Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot. Mol Microbiol 9:1239–1246

    Article  PubMed  CAS  Google Scholar 

  • Forbes BA (1997) Critical assessment of gene amplification approaches on the diagnosis of tuberculosis. Immunol Invest 26:105–116

    Article  PubMed  CAS  Google Scholar 

  • Frieden TR et al (1993) The emergence of drug-resistant tuberculosis in New York City. N Engl J Med 328:521–526

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Pastrana D et al (2001) Comparison of Amplicor, inhouse polymerase chain reaction, and conventional culture for the diagnosis of tuberculosis in children. Clin Infect Dis 32:17–22

    Article  PubMed  CAS  Google Scholar 

  • Heifets LB (1991) Antituberculosis drugs: antimicrobial activity in vitro. In: Heifets LB (ed) Drug susceptibility in the chemotherapy of mycobacterial infections. CRC Press, Boca Raton, pp 14–57

    Google Scholar 

  • Hellyer TJ et al (1999a) Quantitative analysis of mRNA as a marker for viability of Mycobacterium tuberculosis. J Clin Microbiol 37:290–295

    PubMed  CAS  Google Scholar 

  • Hellyer TJ et al (1999b) Detection of viable Mycobacterium tuberculosis by reverse transcriptase-strand displacement amplification of mRNA. J Clin Microbiol 37:518–523

    PubMed  CAS  Google Scholar 

  • Heym B et al (1995) Missense mutations in the catalase-peroxidase gene, katG, are associated with isoniazid resistance in Mycobacterium tuberculosis. Mol Microbiol 15:235–245

    Article  PubMed  CAS  Google Scholar 

  • Hooper DC, Wolfson JS (1989) Mechanism of action and resistance. In: Hooper DC, Wolfson JS (eds) Quinolone antimicrobial agents. American Society of Microbiology Press, Washington DC, pp 5–34

    Google Scholar 

  • Iovannisci DM, Winn-Deen ES (1993) Ligation amplification and fluorescence detection of Mycobacterium tuberculosis DNA. Mol Cell Probes 7:35–43

    Article  PubMed  CAS  Google Scholar 

  • Jonas V et al (1993) Detection and identification of Mycobacterium tubercuosis directly from sputum Sediments by amplification of rRNA. J Clin Microbiol 31:2410–2416

    PubMed  CAS  Google Scholar 

  • Kaul KL (2001) Molecular detection of Mycobacterium tuberculosis: impact on patient care. Clin Chem 47:1553–1558

    PubMed  CAS  Google Scholar 

  • Kapur V et al (1994) Characterization by automated DNA sequencing of mutations in the gene (rpoB) encoding the RNA polymerase beta subunit in rifampin-resistant Mycobacterium tuberculosis strains from New York City and Texas. J Clin Microbiol 32:1095–1098

    PubMed  CAS  Google Scholar 

  • Kapur V et al (1995) Rapid Mycobacterium species assignment and unambiguous identification of mutations associated with antimicrobial resistance in Mycobacterium tuberculosis by automated DNA sequencing. Arch Pathol Lab Med 119:131–138

    PubMed  CAS  Google Scholar 

  • Kent L et al (1996) Demonstration of homology between IS6110 of Mycobacterium tuberculosis and DNAs of other Mycobacterium spp.? J Clin Microbiol 33:2290–2293

    Google Scholar 

  • Kent P, Kubica G (1985) Public health mycobacteriology: a guide for the Level III laboratory. US Department of Health and Human Services, Public Heath Service, CDC, Atlanta, pp 31–56

    Google Scholar 

  • Kim BJ et al (2001) Detection of rifampin-resistant Mycobacterium tuberculosis in sputa by nested PCR-linked singlestrand conformation polymorphism and DNA sequencing. J Clin Microbiol 39:2610–2617

    Article  PubMed  CAS  Google Scholar 

  • Kirschner P et al (1993) Genotypic identification of mycobacteria by nucleic acid sequence determination: report of a 2-year experience in a clinical laboratory. J Clin Microbiol 31:2882–2889

    PubMed  CAS  Google Scholar 

  • Konno K, Feldmann FM, McDermott W (1967) Pyrazinamide susceptibility and amidase activity of tubercle bacilli. Am Rev Respir Dis 95:461–469

    PubMed  CAS  Google Scholar 

  • Marttila HJ et al (1996) katG mutations in isoniazid-resistant Mycobacterium tuberculosis isolates recovered from Finnish patients. Antimicrob Agents Chemother 40:2187–2189

    PubMed  CAS  Google Scholar 

  • Mitarai S et al (2001) Potential use of Amplicor PCR kit in diagnosing pulmonary tuberculosis from gastric aspirate. J Microbiol Methods 47:339–344

    Article  PubMed  CAS  Google Scholar 

  • Moore M et al (1997) Trends in drug-resistant tuberculosis in the United States. J Am Med Assoc 278:833–837

    Article  CAS  Google Scholar 

  • Mulcahy GM et al (1996) IS<;5110-based PCR methods for the detection of Mycobacterium tuberculosis. J Clin Microbiol 34:1348–1349

    PubMed  CAS  Google Scholar 

  • Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155:335–350

    Article  PubMed  CAS  Google Scholar 

  • Musser JM (1995) Antimicrobial agent resistance in mycobacteria: molecular genetic insights. Clin Microbiol Rev 8:496–514

    PubMed  CAS  Google Scholar 

  • Musser JM et al (1996) Characterization of the catalase-peroxidase gene (katG) and inhA locus in isoniazid-resistant and-susceptible strains of Mycobacterium tuberculosis by automated DNA sequencing: restricted array of mutations associated with drug resistance. J Infect Dis 173: 196–202

    Article  PubMed  CAS  Google Scholar 

  • Nachamkin I, Kang C, Weinstein MP (1997) Detection of resistance to isoniazid, rifampin, and streptomycin in clinical isolates of Mycobacterium tuberculosis by molecular methods. Clin Infect Dis 24:894–900

    Article  PubMed  CAS  Google Scholar 

  • Nolte FS et al (1993) Direct detection of Mycobacterium tuberculosis in sputum by polymerase chain reaction and DNA hybridization. J Clin Microbiol 31:1777–1782

    PubMed  CAS  Google Scholar 

  • Oh EJ et al (2001) Improved detection and differentiation of mycobacteria with combination of Mycobacterium Growth Indicator Tube and Roche COBAS AMPLICOR® System in conjunction with Duplex PCR. J Microbiol Methods 46: 29–36

    Article  PubMed  CAS  Google Scholar 

  • Otal I et al (1997) Use of a PCR method based on IS6110 polymorphism for typing Mycobacterium tuberculosis strains from BACTEC cultures. J Clin Microbiol 35:273–277

    PubMed  CAS  Google Scholar 

  • Piatek AS et al (1998) Molecular beacon sequence analysis for detecting drug resistance in Mycobacterium tuberculosis. Nat Biotechnol 16:359–363

    Article  PubMed  CAS  Google Scholar 

  • Piatek AS et al (2000) Genotypic analysis of Mycobacterium tuberculosis in two distinct populations using molecular beacons: implications for rapid susceptibility testing. Antimicrob Agents Chemother 44:103–110

    Article  PubMed  CAS  Google Scholar 

  • Plikaytis BB et al (1993) Rapid, amplification-based fingerprinting of Mycobacterium tuberculosis. J Gen Microbiol 139:1537–1542

    Article  PubMed  CAS  Google Scholar 

  • Poa CC et al (1990) Direct detection and identification of Mycobacterium tuberculosis by DNA amplification. J Clin Microbiol 28:1877–1880

    Google Scholar 

  • Ramaswamy S, Musser JM (1998) Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 Update. Tuberc Lung Dis 79:3–29

    Article  CAS  Google Scholar 

  • Rossau R et al (1997) Evaluation of the INNO-LiPA Rif. TB assay, a reverse hybridization assay for the simultaneous detection of Mycobacterium tuberculosis complex and its resistance to rifampin. Antimicrob Agents Chemother 41:2093–2098

    PubMed  CAS  Google Scholar 

  • Rouse DA et al (1995) Characterization of the katG and inhA genes of isoniazid-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother 39: 2472–2477

    Article  PubMed  CAS  Google Scholar 

  • Selvakumar N et al (1997) Single Strand conformation polymorphism profiles with biotinylated PCR products to detect mutation in rpoB gene of Mycobacterium tuberculosis. Curr Sei 73:774–777

    CAS  Google Scholar 

  • Shalwar R et al (1993) Detection of Mycobacterium tuberculosis in clinical samples by amplification of DNA. Clin Microbiol 29:712–717

    Google Scholar 

  • Shah J et al (1995) Q-beta replicase-amplified assay for detection of Mycobacterium tuberculosis directly from clinical speeimens. J Clin Microbiol 33:1435–1441

    PubMed  CAS  Google Scholar 

  • Shinnick TM, Jonas V (1994) Molecular approaches to the diagnosis of tuberculosis. In: Bloom B (ed) Tuberculosis: pathogenesis, protection and control. American Society for Microbiology Press, Washington DC, pp 517–530

    Google Scholar 

  • Soini H et al (1992) Detection and identification of mycobacteria by amplification of a segment of the gene coding for the 32-kilodalton protein. J Clin Microbiol 30:2025–2028

    PubMed  CAS  Google Scholar 

  • Soini H et al (1996) Comparison of AMPLICOR® and 32-kilodalton PCR for detection of Mycobacterium tuberculosis from sputum speeimens. J Clin Microbiol 34:1829–1830

    PubMed  CAS  Google Scholar 

  • Sougakoff W et al (1997) Nonradioactive single-strand conformation polymorphism analysis for detection of fluoroquinolone resistance in mycobacteria. Eur J Clin Microbiol Infect Dis 16:395–398

    Article  PubMed  CAS  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Article  PubMed  CAS  Google Scholar 

  • Sreevatsan S et al (1996) Characterization of rpsL and rrs mutations in streptomyein-resistant Mycobacterium tuberculosis isolates from diverse geographical localities. Antimicrob Agents Chemother 40:1024–1026

    PubMed  CAS  Google Scholar 

  • Sreevatsan S et al (1997a) Mutations associatedby pyrazinamide resistance in pncA of Mycobacterium tuberculosis complex organisms. Antimicrob Agents Chemother 41:636–640

    PubMed  CAS  Google Scholar 

  • Sreevatsan S et al (1997b) Ethambutol resistance in mycobacterium tuberculosis: critical role of embB mutations. Antimicrob Agents Chemother 41:1677–1681

    PubMed  CAS  Google Scholar 

  • Sreevatsan S et al. (1997c) Analysis of the oxyR-ahpC region in isoniazid-resistant and-susceptible Mycobacterium tuberculosis complex organisms recovered from diseased humans and animals in diverse localities. Antimicrob Agents Chemother 41:600–606

    PubMed  CAS  Google Scholar 

  • Stratton MA, Reed MT (1986) Short-course drug therapy for tuberculosis. Clin Pharm 5:977–987

    PubMed  CAS  Google Scholar 

  • Sullivan EA et al (1995) Emergence of fluoroquinolone-resistant tuberculosis in New York City. Lancet 345:1148–1150

    Article  PubMed  CAS  Google Scholar 

  • Takayama K, Kilburn JO (1989) Inhibition of synthesis of arabinogalactan by ethambutol in Mycobacterium smegmatis. Antimicrob Agents Chemother 33:1493–1

    Article  PubMed  CAS  Google Scholar 

  • Takayama K et al (1979) Inhibition by ethambutol of mycolic aeid transfer into the cell wall of Mycobacterium smegmatis. Antimicrob Agents Chemother 16:240–242

    Article  PubMed  CAS  Google Scholar 

  • Takiff HE et al (1994) Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations. Antimicrob Agents Chemother 38:773–780

    Article  PubMed  CAS  Google Scholar 

  • Telenti A et al (1993a) Detection of rifampin-resistance mutations in Mycobacterium tuberculosis. Lancet 341:647–650

    Article  PubMed  CAS  Google Scholar 

  • Telenti A et al (1993b) Direct, automated detection of rifampinresistant Mycobacterium tuberculosis by polymerase chain reaction and single-strand conformation polymorphism analysis. Antimicrob Agents Chemother 37:2054–2058

    Article  PubMed  CAS  Google Scholar 

  • Telenti A et al (1997a) Genotypic assessment of isoniazid and rifampin resistance in Mycobacterium tuberculosis: a blind study at reference laboratory level. J Clin Microbiol 35:719–723

    PubMed  CAS  Google Scholar 

  • Telenti A et al (1997b) The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nat Med 3:567–570

    Article  PubMed  CAS  Google Scholar 

  • Temesgen Z et al (1997) Use of polymerase chain reaction single-strand conformation polymorphism (PCR-SSCP) analysis to detect a point mutation in the catalase-peroxidase gene (katG) of Mycobacterium tuberculosis. Mol Cell Probes 11:59–63

    Article  PubMed  CAS  Google Scholar 

  • Thierry D et al (1990) IS6110,an IS-like element of Mycobacterium tuberculosis complex. Nucleic Acids Res 18:188

    Article  PubMed  CAS  Google Scholar 

  • Thomas GA, Williams DL, Soper SA (2001) Capillary electrophoresis-based heteroduplex analysis with a universal heteroduplex generator for detection of point mutations associated with rifampin resistance in tuberculosis. Clin Chem 47:1195–1203

    PubMed  CAS  Google Scholar 

  • van Embden JD et al (1993) Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol 31: 406–409

    PubMed  Google Scholar 

  • van Soolingen D et al (1994) DNA fingerprinting of Mycobacterium tuberculosis. Methods Enzymol 235:196–205

    Article  PubMed  CAS  Google Scholar 

  • Victor TC et al (1996) katG mutations in isoniazid-resistant strains of Mycobacterium tuberculosis are not infrequent. Antimicrob Agents Chemother 40:1572

    PubMed  CAS  Google Scholar 

  • Walker GT et al (1992) Strand displacement amplification-an isothermal, in vitro DNA amplification technique. Nucleic Acids Res 20:1691–1696

    Article  PubMed  CAS  Google Scholar 

  • Whelen A et al (1995) Direct genotypic detection of Mycobacterium tuberculosis rifampin resistance in clinical speeimens by using single-tube heminested PCR. J Clin Microbiol 33:556–561

    PubMed  CAS  Google Scholar 

  • Williams DL et al (1994) Characterization of rifampin resistance in pathogenic mycobacteria. Antimicrob Agents Chemother 38:2380–2386

    Article  PubMed  CAS  Google Scholar 

  • Williams DL, Gillis TP, Dupree WG (1995) Ethanol fixation of sputum Sediments for DNA-based detection of Mycobacterium tuberculosis. J Clin Microbiol 33:1558–1561

    PubMed  CAS  Google Scholar 

  • Williams DL et al (1996) PCR-heteroduplex detection of rifampin-resistant Mycobacterium tuberculosis. In: Persing D (ed) PCR protocols for emerging infectious diseases. ASM Press, Washington DC,pp 122–129

    Google Scholar 

  • Williams DL et al (1998a) Contribution of rpoB mutations to development of rifamycin cross-resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 42:1853–1857

    PubMed  CAS  Google Scholar 

  • Williams DL et al (1998b) Evaluation of a polymerase chain reaction-based universal heteroduplex generator assay for direct detection of rifampin-susceptibility of Mycobacterium tuberculosis directly from sputum specimens. Clin Infect Dis 26:446–450

    Article  PubMed  CAS  Google Scholar 

  • Winder FG, Collins PB, Whelan D (1971) Effects of ethionamide and isoxyl on mycolic acid synthesis in Mycobacterium tuberculosis BCG. J Gen Microbiol 66:379–380

    Article  PubMed  CAS  Google Scholar 

  • Winder FG (1982) Mode of action of the antimycobacterial agents and associated aspects of the molecular biology of the mycobacteria. In: Ratledge C, Stanford J (eds) The biology of the mycobacteria, vol 1. Academic Press, London, pp 353–438

    Google Scholar 

  • Woods GL (2001) Molecular techniques in mycobacterial detection. Arch Pathol Lab Med 125:122–126

    PubMed  CAS  Google Scholar 

  • Yeboah-Manu D, Yates MD, Wilson SM (2001) Application of a simple multiplex PCR to aid in routine work of the mycobacterium reference laboratory. J Clin Microbiol 39:4166–4168

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y et al (1992) The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358:591–593

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Williams, D.L. (2004). PCR and Diagnosis of Tuberculosis. In: Madkour, M.M. (eds) Tuberculosis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18937-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18937-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62365-3

  • Online ISBN: 978-3-642-18937-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics