Skip to main content

Approximate Bayesian Computation and MCMC

  • Conference paper
Monte Carlo and Quasi-Monte Carlo Methods 2002

Summary

For many complex probability models, computation of likelihoods is either impossible or very time consuming. In this article, we discuss methods for simulating observations from posterior distributions without the use of likelihoods. A rejection approach is illustrated using an example concerning inference in the fossil record. A novel Markov chain Monte Carlo approach is also described, and illustrated with an example from population genetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. A. Beaumont, W. Zhang, and D. J. Balding. Approximate Bayesian computation in population genetics. Genetics, 162:2025–2035, 2002.

    Google Scholar 

  2. Y.-X. Fu and W.-H. Li. Estimating the age of the common ancestor of a sample of DNA sequences. Mol. Biol. EvoL., 14:195–199, 1997.

    Article  Google Scholar 

  3. W. R. Gilks, S. Richardson, and D. J. Spiegelhalter. Markov Chain Monte Carlo in Practice. Chapman and Hall, 1996.

    Google Scholar 

  4. T. E. Harris. The Theory of Branching Processes. Springer Verlag, Berlin, 1963.

    Book  MATH  Google Scholar 

  5. W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57:97–109, 1970.

    Article  MATH  Google Scholar 

  6. P. Marjoram, J. Molitor, V. Plagnol, and S. Tavaré. Markov chain Monte Carlo without likelihoods. Submitted, 2003.

    Google Scholar 

  7. L. Markovtsova, P. Marjoram, and S. Tavaré. The age of a unique event polymorphism. Genetics, 156:401–409, 2000a.

    Google Scholar 

  8. L. Markovtsova, P. Marjoram, and S. Tavaré. The effects of rate variation on ancestral inference in the coalescent. Genetics, 156:1427–1436, 2000b.

    Google Scholar 

  9. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A.H. Teller, and E. Teller. Equations of state calculations by fast computing machines. J. Chem. Phys., 21:1087–1092, 1953.

    Article  Google Scholar 

  10. J. K. Pritchard, M. T. Seielstad, A. Perez-Lezaun, and M. W. Feldman. Population growth of human Y chromosomes: A study of Y chromosome microsatellites. Mol. Biol. EvoL., 16:1791–1798, 1999.

    Article  Google Scholar 

  11. B. D. Ripley. Stochastic Simulation. Wiley, New York, 1987.

    Book  MATH  Google Scholar 

  12. G. F. Shields, A. M. Schmeichen, B. L. Frazier, A. Redd, M. I. Vovoeda, J.K. Reed, and R. H. Ward. mtDNA sequences suggest a recent evolutionary divergence for Beringian and Northern North American populations. Am. J. Hum. Genet., 53:549–562, 1993.

    Google Scholar 

  13. C. Soligo, O. Will, S. Tavaré, C. R. Marshall, and R. D. Martin. New light on the dates of primate origins and divergence. In M. J. Ravosa and M. Dagosto, editors, Primate Origins and Adaptations. Kluwer Academic/Plenum Publishers, New York, 2003.

    Google Scholar 

  14. S. Tavaré, C. R. Marshall, O. Will, C. Soligo, and R. D. Martin. Using the fossil record to estimate the age of the last common ancestor of extant primates. Nature, 416:726–729, 2002.

    Article  Google Scholar 

  15. J. D. Wall. A comparison of estimators of the population recombination rate. Mol. Biol. Evol., 17:156–163, 2000.

    Article  Google Scholar 

  16. G. Weiss and A. von Haeseler. Inference of population history using a likelihood approach. Genetics, 149:1539–1546, 1998.

    Google Scholar 

  17. O. Will, V. Plagnol, C. Soligo, R. D. Martin, and S. Tavaré. Statistical inference in the primate fossil record: a Bayesian approach. In preparation, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Plagnol, V., Tavaré, S. (2004). Approximate Bayesian Computation and MCMC. In: Niederreiter, H. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2002. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18743-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18743-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20466-4

  • Online ISBN: 978-3-642-18743-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics