Skip to main content

The Strong Tractability of Multivariate Integration Using Lattice Rules

  • Conference paper
Monte Carlo and Quasi-Monte Carlo Methods 2002

Summary

Although many applications involve integrals over unbounded domains, most of the theory for numerical approximation of integrals assumes that the integration domain is bounded. This article builds upon previous work by the authors that investigates the approximation of integrals over boxes that may be finite, semiinfinite or infinite in each coordinate direction. The integrand is sampled over a design, W -1(zi), that is a transformation of the nodeset of an integration lattice z i . The error bound for the numerical integration rule is shown to be a product of two terms: i) the discrepancy of the original design, z i , on the unit cube and ii) the variation of the integrand. Previously known convergence rates for extensible lattice rules on unit cubes are used to derive sufficient conditions for the strong tractability of integration over more general domains. The variation of the integrand depends on several factors, including the function W used to make the transformation of variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. F. J. Hickernell and H. S. Hong, Computing multivariate normal probabilities using rank-1 lattice sequences, Proceedings of the Workshop on Scientific Computing (Hong Kong) (G. H. Golub, S. H. Lui, F. T. Luk, and R. J. Plemmons, eds.), Springer-Verlag, Singapore, 1997, pp. 209-215.

    Google Scholar 

  2. F. J. Hickernell, H. S. Hong, P. L’Éc uyer, and C. Lemieux, Extensible lattice sequences for quasi-Monte Carlo quadrature, SIAM J. Sci. Comput. 22 (2000), 1117–1138.

    Article  MathSciNet  MATH  Google Scholar 

  3. F. J. Hickernell, A generalized discrepancy and quadrature error bound, Math.Comp. 67 (1998), 299–322.

    Article  MathSciNet  MATH  Google Scholar 

  4. F. J. Hickernell and H. Niederreiter, The existence of good extensible rank-1 lattices, J. Complexity 19 (2003), 286–300.

    Article  MathSciNet  MATH  Google Scholar 

  5. F. J. Hickernell, I. H. Sloan, and G. W. Wasilkowski, On strong tractability of weighted multivariate integration, Math. Comp. (2004), to appear.

    Google Scholar 

  6. I. H. Sloan, and G. W. Wasilkowski, On tractability of weighted integration for certain Banach spaces of functions, Monte Carlo and Quasi-Monte Carlo Methods 2002 (H. Niederreiter, ed.), Springer-Verlag, Berlin, 2004, to appear.

    Google Scholar 

  7. I. H. Sloan, and G. W. Wasilkowski, On tractability of weighted integration over bounded and unbounded regions in ℝ s, Math. Comp. (2004), to appear.

    Google Scholar 

  8. L. K. Hua and Y. Wang, Applications of number theory to numerical analysis, Springer-Verlag and Science Press, Berlin and Beijing, 1981.

    MATH  Google Scholar 

  9. F.Y. Kuo and S. Joe, Component-by-component construction of good lattice rules with a composite number of points, J. Complexity 18 (2002), 943–976.

    Article  MathSciNet  MATH  Google Scholar 

  10. F. Y. Kuo, Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces, J. Complexity 19 (2003), 301–320.

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Niederreiter, Random number generation and quasi-Monte Carlo methods, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1992.

    Book  MATH  Google Scholar 

  12. I. H. Sloan and S. Joe, Lattice methods for multiple integration, Oxford University Press, Oxford, 1994.

    MATH  Google Scholar 

  13. I. H. Sloan, F. Y. Kuo, and S. Joe, Constructing randomly shifted lattice rules in weighted Sobolev spaces, SIAM J. Numer. Anal. 40 (2002), 1650–1665. [SKJ02b]_F. Y. Kuo, and S. Joe, On the step-by-step construction of quasi-Monte Carlo integation rules that achieve strong tractability error bounds in weighted Sobolev spaces, Math. Comp. 71 (2002), 1609–1640.

    Article  MathSciNet  MATH  Google Scholar 

  14. I. H. Sloan and A. V. Reztsov, Component-by-component construction of good lattice rules, Math. Comp. 71 (2002), 263–273.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hickernell, F.J., Sloan, I.H., Wasilkowski, G.W. (2004). The Strong Tractability of Multivariate Integration Using Lattice Rules. In: Niederreiter, H. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2002. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18743-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18743-8_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20466-4

  • Online ISBN: 978-3-642-18743-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics