Skip to main content

Urologie

  • Chapter
PET/CT-Atlas

Zusammenfassung

Seit 40 Jahren ist die Metastasendiagnostik des Skelettsystems onkologischer Schwerpunkt der Nuklearmedizin. Im Zeitalter von Ultraschall, CT und endorektaler MRT ist die urologische Frühdiagnostik einer etwaigen Prostatakapselpenetration hinzugekommen [29], [43], [58, [106], [129].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Albertsen PC, Hanley JA, Fine J et al. (2005) 20-year outcomes following conservative management of clinically localized prostate cancer. J Am Med Ass (JAMA) 293: 2095–2101

    CAS  Google Scholar 

  2. Amico S, Liehn JC, Desoize B et al. (1991) Comparison of posphatase isoenzymes PAP and PSA with bone scan in patients with prostatic carcinoma. Clin Nucl Med 16: 643

    PubMed  CAS  Google Scholar 

  3. Anjos DA, Etchebehere ECSC, Ramos CD et al. (2007) 18F-FDG PET/CT delayed images after diuretic for staging for restaging invasive bladder cancer J Nucl Med 48: 764

    PubMed  Google Scholar 

  4. Bander NH, Trabulsi EJ, Kostakoglu L et al. (2003) Targeting metastatic prostate cancer with radiolabeled monoclonal antibody J591 to the extracellular domain of prostate specific membrane antigen. J Urol 170: 1717-1721

    PubMed  CAS  Google Scholar 

  5. Bastian PJ, Waha A, Müller SC, von Rücker A (2004) Epigenetische Veränderungen in der Karzinogenese des Prostatakarzinoms. Dtsch Ärztebl 101: A1981–A1985

    Google Scholar 

  6. Baum RP, Hör G (1996) Renal tumor imaging. In: Pabst HW, Adam WE, Hör G, Kriegel H, Schwaiger M (Hrsg) Handbook of Nuclear Medicine. Gustav Fischer, Stuttgart, S 180–190

    Google Scholar 

  7. Baum RP, Hertel A, Baew-Christow T et al. (1991) First clinical results with a Tc-99m labelled monoclonal anti-AFP antibody in germ cell and liver tumors (FP-2G3-5). Eur J Nucl Med: 535

    Google Scholar 

  8. Baum RP, Hertel A, Baew-Christow T, Boeckmann W, Hör G, Goldenberg DM (1991) Initial clinical results with a Tc-99m labeled anti-AFP monoclonal antibody fragment in germ cell and liver tumors (Abstr. No 613). J Nucl Med 32: 1053

    Google Scholar 

  9. Becherer A, De Santis M, Bokemeyer C et al. (2003) FDG-PET as prognostic indicator for seminoma residuals: An update from the SEMPET trial. J Nucl Med 5 (Suppl 5): 174P

    Google Scholar 

  10. Beheshdi M, Vali R, Langsteger W (2007) [18F]fluorocholine PET/CT in the assessment of bone metastases in prostate cancer (letter to the E). Eur J Nucl Med Mol Imaging 34: 1316–1317

    Google Scholar 

  11. Belitsky PH, Ghose T, Aquino J et al. (1978) Radionuclide imaging of primary renal-cell carcinoma by I-131-labeled antitumor antibody. J Nucl Med 19: 427–430

    PubMed  CAS  Google Scholar 

  12. Beyersdorff D, Taupitz M, Winkelmann B et al. (2002) Patients with a history of elevated prostate-specific antigen levels and negative transrectal US guided quadrant or sextant biopsy results: value of MR imaging. Radiology 224: 701–706

    PubMed  Google Scholar 

  13. Blumstein NM, Reske SN (2004) PET/CT zur Diagnostik des Prostatakarzinomes. Der Nuklearmediziner 27: 304–314

    Google Scholar 

  14. Blumstein NM, Finsterbusch FM, Penner S et al. (2005) Präoperative C11-Cholin-PET/CT der Prostata und histopathologische 3D-Korrelation. Nuklearmedizin 44: V85

    Google Scholar 

  15. Bockisch A et al. (2006) PET/CT-Evolution oder Revolution in der onkologischen Diagnostik? Dtsch Ärztebl 103(5): A249–A254

    Google Scholar 

  16. Börgermann C, Rübben H (2006) Früherkennung des Prostatakarzinoms. Dtsch Ärztebl 103(37): 2399

    Google Scholar 

  17. Bottke D, Wiegel T, Müller M et al. (2004) Strahlentherapie nach radikaler Prostatektomie (Vorgehen bei PSA-Anstieg oder -Persistenz ohne histologische Sicherung eines Lokalrezidivs). Dtsch Ärztebl 101: A2255–A2259

    Google Scholar 

  18. Breeuwsma AJ, Pruim J, Jongen MM et al. (2005) In vivo uptake of 11C-Cholin does not correlate with cell proliferation in human prostate cancer. Eur J Nucl Med Mol Imaging 32: 668–673

    PubMed  Google Scholar 

  19. Breul J, Zimmermann F, Dettmar P, Paul R (2003) Prostatakarzinom. Manual urogenitale Tumoren. Zuckschwerdt, München, S 1–42

    Google Scholar 

  20. Bruwer G, Heyns CF, Allen FJ (1999) Influence of local tumor stage and grade on reliability of serum prostate-specific antigen in predicting skeletal metastases in patients with adenocarcinoma of the prostate. Eur Urol 35: 223–227

    PubMed  CAS  Google Scholar 

  21. Castelucci P, Fuccio C, Nanni C et al. (2009) Influence of trigger PSA and PSA kinetics on 11C-Choline PET/CT detection rate in patients with biochemical relapse after radical prostatectomy. J Nucl Med 50: 1394

    Google Scholar 

  22. Choudhri AH, Patel PR, Cunningham DA (1987) Uptake of 99mTc-DTPA by a renal oncocytoma. Eur J Nucl Med 13: 311–312

    PubMed  CAS  Google Scholar 

  23. Chybowski FM, Bergstralh EJ, Oesterling JE (1992) The effect of digital rectal examination on the serum prostate specific antigen concentration: results of a randomized study. J Urol 148: 83–86

    PubMed  CAS  Google Scholar 

  24. Cimitan M, Bortolus R, Morassut S et al. (2006) [18F]fluorocholine PET/CT imaging for the detection of recurrent prostate cancer at PSA relapse: experience in 100 consecutive patients. Eur J Nucl Med Mol Imaging 33: 1387

    PubMed  Google Scholar 

  25. Coleman RE, Mashiter G, Whitaker KB, Moss DW, Rubens RD, Fogelman I (1988) Bone scan flare predicts successful systemic therapy for bone metastases. J Nucl Med 29: 1354–1359

    PubMed  CAS  Google Scholar 

  26. Cremerius U, Effert PJ, Adam Get et al. (1998) FDG PET for detection and therapy control of metastatic germ cell tumors. J Nucl Med 39: 815–822

    PubMed  CAS  Google Scholar 

  27. Cremerius U, Wildberger J, Borchers H et al. (1999) Does positron emission tomography using 18-fluoro-deoxy-2-deoxyglucose improve clinical staging of testicular cancer? – results of a study in 50 patients. Urology 54: 900–904

    PubMed  CAS  Google Scholar 

  28. D’Amico AV, Moul J, Carrol PR et al. (2005) Surrogate endpoint for prostate cancer specific mortality in patients with non-metastatic hormone refractory prostate cancer. J Urol 173: 1572

    PubMed  Google Scholar 

  29. Davis BJ, Pisansky TM, Wilson TM et al. (2000) Extent of extracapsular extension in localized prostate cancer. Urology 55: 382–386

    Google Scholar 

  30. de Jong IJ, Pruim J, Elsinga PhH et al. (2003) Preoperative staging of pelvic lymphnodes in prostate cancer by 11C-Choline PET. J Nucl Med 44: 331–335

    PubMed  Google Scholar 

  31. de Wit M, Heicapell R, Bares R (2001) PET zur Stadieneinteilung und Therapiekontrolle bei Keimzelltumoren. Dtsch Ärztebl 98: C2710

    Google Scholar 

  32. DeGrado TR, Baldwin SW, Wang S et al. (2001) Synthesis and evaluation of 18F-labeled choline analogs as oncologic tracers. J Nucl Med 42: 1805–1814

    PubMed  CAS  Google Scholar 

  33. Demas BE, Hricak H (1992) The kidneys. Higgins CB, Hricak H, Helms CA (Hrsg) Magnet resonance imaging of the body. 2. Aufl. Raven Press, New York, S 785–816

    Google Scholar 

  34. Dhingsa R, Qayyum A, Coakley VF et al. (2004) Prostate cancer localization with endorectal MR imaging and MR spectroscopic imaging: effect of clinical data on reader accuracy. Radiology 230: 215–220

    PubMed  Google Scholar 

  35. Donnelly SE, Donnelly BJ, Saliken JC et al. (2004) Prostate cancer: gadolinium-enhanced MR imaging at 3 weeks compared with needle biopsy at 6 months after cryoablation. Radiology 232(3): 830–833

    PubMed  Google Scholar 

  36. Dorn R et al. (2003) Lymphoscintigraphy and sentinel lymph node (SLN) identification in prostate cancer: results from 350 patients (Abstr. No 15). Eur J Nucl Med and Molecular Imaging 30: 153

    Google Scholar 

  37. Effert PJ, Bares R, Handt S, Wolff JM, Büll U, Jakse G (1996) Metabolic imaging of untreated prostate cancer by positron emission tomography with 18-fluorine-labeled deoxyglucose. J Urology 155: 994–998

    CAS  Google Scholar 

  38. Even-Sapir E, Metser U, Meshani E, al (2006) The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-ofview SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 47: 287–297

    PubMed  Google Scholar 

  39. Farsad M, Castellucci P, Nanni C et al. (2004) 11C-choline PET/CT imaging for localization of recurrent prostate cancer (Abstr.204). Eur J Nucl Med Mol Imaging 31 (Suppl 2): S252

    Google Scholar 

  40. Flamen P, Bossuyt A, De Greve J, Pipeleers-Marichal M, Keuppens F, Somers G (1993) Imaging of renal cell cancer with radiolabelled octreotide. Nucl Med Comm 14: 873–877

    CAS  Google Scholar 

  41. Fornara P (2003) PSA-Test-Gesellschaft für Urologie. Dtsch Ärztebl 100: C2117

    Google Scholar 

  42. Fricke E, Machtens S, Hofmann M et al. (2003) Positron emission tomography with 11C-acetate and 18F-FDG in prostate cancer patients. Eur J Nucl Med 30: 607–611

    CAS  Google Scholar 

  43. Fütterer J et al. (2006) Prostate cancer: local staging at 3T endorectal MR imaging. Radiol 238: 184–191

    Google Scholar 

  44. Gallagher BM, Fowler JS, Gutterson NI et al. (1978) Metabolic trapping as a principle of radiopharmaceutical design: some factors responsible for the biodistribution of [18F] 2-deoxy-2-fluoro-D-glucose. J Nucl Med 19: 1154

    PubMed  CAS  Google Scholar 

  45. Gann PH, Han M (2005) The natural history of clinically localized prostate cancer. J Am Med Ass (JAMA) 293: 2149–2151

    CAS  Google Scholar 

  46. Garcia Fifueiras R, Martin CV, Isidro IRE (2007) MRI, CT offer answers to renal mass queries. Diag Imag Europe June/July: 9–12

    Google Scholar 

  47. Grosu AL, Krause BJ, Nestle U (2006) PET/CT in der Strahlentherapieplanung. Der Nuklearmediziner 29: 151–158

    Google Scholar 

  48. Hain SF, O’Doherty MJ, Tomothy AR et al (2000) Fluorodeoxyglucose PET in the initial staging of germ cell tumours. Eur J Nucl Med 27: 590–594

    PubMed  CAS  Google Scholar 

  49. Hara T (2002) 11C-choline and 2-deoxy-2-[18F]fluoro-D-glucose in tumor imaging with positron emission tomography. Mol Imaging Biol 4: 267–273

    PubMed  Google Scholar 

  50. Hara T, Kosaka N, Kishi H (2002) Development of 18F-Fluoroethylcholine for cancer imaging with PET: Synthesis, biochemistry, and prostate cancer imaging. J Nucl Med 43: 187–199

    PubMed  CAS  Google Scholar 

  51. Hardy JG, Anderson GS, Newble GM (1976) Uptake of 99mTcpyrophospate by metastatic extragenital seminoma. J Nucl Med 17: 105–106

    Google Scholar 

  52. Harisinghani MG, Barentsz J, Hahn PF et al. (2003) Noninvasive detection of clinically occult lymphnode metastases in prostate cancer. N Engl J Med 348: 2491–2499

    PubMed  Google Scholar 

  53. Harrison J, Ali A, Bonomi Ph, Prinz R (2000) The role of positron emission tomography in selecting patients with metastatic cancer for adrenalectomy. Am Surgeon 66: 432–437

    PubMed  CAS  Google Scholar 

  54. Hautzele H, Müller-Mattheis V, Reinhardt MJ et al. (2005) Validierung von F-18-FDG-PET und CT im Vergleich zur Histologie beim Peniskarzinom. Nuklearmedizin 44: V90

    Google Scholar 

  55. Heinisch M, Loidl W, Haim S et al. (2005) PET/CT mit F18-Fluorcholin zum Restaging von Patienten mit Prostatakarzinom: Sinnvoll bei PSA<5 ng/ml? Nuklearmedizin 44: V88

    Google Scholar 

  56. Hertel A, Baum RP, Baew-Christow T, Boeckmann W, Goldenberg DM, Jonas D, Hör G (1991) Erste klinische Erfahrungen mit einem Tc-99m markierten ANTI-AFP-FAB-Antikörper bei metastasierenden Hodenkarzinomen und primären Leberzelltumoren (P37). Nuklearmedizin 30: A60

    Google Scholar 

  57. Hör G (1993) Positronen-Emissions-Tomographie (PET) – klinische Relevanz. Siemens, Best Nr A91100-M2330-D694-01 60694 SD 03936.0: 3–31

    Google Scholar 

  58. Hör G, Zindel C, Baum RP (1997) Nuklearmedizinische Diagnostik von Knochenmetastasen. In: Böttcher HD, Adamietz IA (Hrsg) Klinik der Skelettmetastasen. Grundlagen, Diagnostik, Therapie. Zuckerschwerdt, München, S 14–34

    Google Scholar 

  59. Hofer C, Laubenbacher C, Block T et al. (1999) Fluorine-18-fluordeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy. Eur Urol 36: 31–35

    PubMed  CAS  Google Scholar 

  60. Hoh CK, Seltzer MA, Franklin J et al. (1998) Positron emission tomography in urological oncology. J Urol: 347–356

    Google Scholar 

  61. Hricak H, Demas BE, Williams RD et al. (1985) Magnetic resonance imaging in the diagnosis and staging of renal and perirenal neoplasms. Radiology 154: 709

    PubMed  CAS  Google Scholar 

  62. Hricak H, Schoder H, Ucar Het al. (2003) Advances in imaging in the postoperative patient with a rising prostate specific antigen level. Semin Oncol 30: 616–634

    PubMed  Google Scholar 

  63. Jemal A, Murray T, Ward E (2005) Cancer Statistics 2005. CA Cancer J Clin 55: 10–30

    PubMed  Google Scholar 

  64. Kann PH (2003) Der Nebennierentumor: Ein altes Problem mit neuem Gesicht. Hess Ärztebl 8: 395–397

    Google Scholar 

  65. Kato T, Tsukamoto E, Kuge Y et al. (2002) Accumulation of 11Cacetate in normal prostate and benign prostatic hyperplasia: comparison with prostate cancer. Eur J Nucl Med Mol Imaging 29: 1492–1495

    PubMed  CAS  Google Scholar 

  66. Kent DL, Larson EB (1992) Disease, level of impact, and quality of research. Three dimensions of clinical efficacy assessment applied to magnetic resonance imaging. Invest Radiol 27: 245– 254

    PubMed  CAS  Google Scholar 

  67. Kole AC, Hoekstr HJ, Sleijfer DT, Nieweg OE, Schraffordt-Koops H, Vaalburg W (1998) Carbon-11-thyrosine imaging of metastatic testicular non-seminoma germ-cell tumors. J Nucl Med: 1027–1029

    Google Scholar 

  68. Kotzerke J, Prang J, Neumaier B et al. (2000) Experience with carbone-11 choline positron emission tomography in prostate carcinoma. Eur J Nucl Med 27: 1415–1419

    PubMed  CAS  Google Scholar 

  69. Kotzerke J, Volkmer B, Neumaier B et al. (2002) Carbon-11 acetate positron emission tomography can detect local recurrence of prostate cancer. Eur J Nucl Med Mol Imaging 29: 1380–1384

    PubMed  CAS  Google Scholar 

  70. Kotzerke J, Volkmer BG, Glatting G et al. (2003) Intraindividual comparison of [11C]acetate and [11C]choline PET for detection of metastases of prostate cancer. Nuklearmedizin 42: 25–30

    PubMed  CAS  Google Scholar 

  71. Kurhanewicz J, Vigneron DB, Hricak H et al. (1996) Three-dimensional H-1 MR spectroscopic imaging of the in situ human prostate with high (0.24-0.7-cm3) spatial resolution. Radiology 198: 795–805

    PubMed  CAS  Google Scholar 

  72. Kurhanewicz J, Swanson MG, Neson SJ et al. (2002) Combined magnetic resonance imaging ans spectroscopic imaging approach to molecular imaging of prostate cancer. J Magn Reson Imaging 16: 451–463

    PubMed  Google Scholar 

  73. Kwee SA, Wei H, Sesterhenn I et al. (2006) Localization of primary prostate cancer with dual phase 18F-Fluorocholine-PET. J Nucl Med 47: 262–269

    PubMed  Google Scholar 

  74. Lapela M, Leskinen-Kallio S, Varpula M et al. (1995) Metabolic imaging of ovarian tumors with carbon-11-methionine: a PET study. J Nucl Med 36: 2196–2200

    PubMed  CAS  Google Scholar 

  75. Larcos G, Mullan BP, Forstrom LA (1993) Scintigraphic findings of renal oncocytoma. Clin Nucl Med 18: 884–886

    PubMed  CAS  Google Scholar 

  76. Larson SM, Schwartz LH (2006) 18F-FDG PET as a candidate for »qualified biomarker«: Functional assessment of treatment response in oncology (Invited perspective). J Nucl Med 47: 901–903

    PubMed  CAS  Google Scholar 

  77. Larson SM, Erdi Y, Akhurst T, Mazumdar M et al. (1999) Tumor treatment response based on visual and quantitative changes in global tumor glycolysis using FDG-PET imaging: The visual response score and the change in total lesion glycolysis. Clin Pos Imag 2: 159–171

    Google Scholar 

  78. Larson SM, Morris M, Gunther I et al. (2004) Tumor localization of 16 beta-18F-fluoro-5 alpha-dihydrotestosteron versus 18 F-FDG in patients with progressive metastatic prostate cancer. J Nucl Med 45: 366–373

    PubMed  CAS  Google Scholar 

  79. Lassen U, Daugaard G, Eigtved A et al. (2003) Whole-body FDG-PET in patients with stage I non-seminomatous germ cell tumours. Eur J Nucl Med 30: 396–402

    CAS  Google Scholar 

  80. Leinmüller R (2009) PSA-Screening auf Prostatakarzinom (Medizinreport). Dtsch Ärztebl 106: C1724

    Google Scholar 

  81. Loch T, I; Leuschner; Genberg C et al. (2000) Improvement of transrectal ultrasound. Artificial neural network (ANNA) in detection and staging of prostatic carcinoma. Urologe A 39: 341–347

    PubMed  CAS  Google Scholar 

  82. Lorente JA, Valencuela H, Morote J, Gelabert A (1999) Serum bone alkaline phosphatase levels enhance the clinical utility of prostate specific antigen in the staging of newly diagnosed prostate cancer patients. Eur J Nucl Med 26: 625–632

    PubMed  CAS  Google Scholar 

  83. Luboldt HJ, Rübben H (2004) Früherkannung des Prostatakarzinoms (PSA-Test nur nach Aufklärung und Einwilligung des Patienten). Dtsch Ärztebl 101: 1736–1738

    Google Scholar 

  84. Marchant J (2002) Screening trials focus on prostate cancer (report). Diagnostic Imag Europe 11: 21–22

    Google Scholar 

  85. Marzola M, Grassetto G, Banti E et al. (2009) The role of 18F-FDG PET/CT in breast cancer patients with increased serum Ca 15-3 levels and negative conventional imaging. Eur J Nucl Med Mol Imaging: 0P094, S175

    Google Scholar 

  86. McPherson DW, Wolf AP, Fowler JS et al. (1985) Synthesis and biodistribution of no-acarrier-added (l-11C) putrescine. J Nucl Med 26: 1186–1189

    PubMed  CAS  Google Scholar 

  87. Medizinreport (2007) Neues in der Urologie 2005/2006. Südwestdeutsche Gesellschaft für Urologie e.V. Hess Ärztebl 2: 84

    Google Scholar 

  88. Messer PM, Blumstein NM, Gottfried HW et al. (2004) C-11-Choline PET-CT in localization of local recurrence in patients with PSA progress after permanent brachytherapy of the prostate (Abstr. 202). Eur J Nucl Med Mol Imaging 31: S252

    Google Scholar 

  89. Montravers F, Rousseau C, Coublet JD et al. (1998) In vivo inaccessibility of somatostatin receptors to 111-In-pentreotide in primary renal cell carcinoma. Nucl Med Commun 19: 953–961

    PubMed  CAS  Google Scholar 

  90. Morris JG, Coorey GJ, Dick R, Evans WA (1967) The diagnosis of renal tumors by radioisotope scanning. J Urol 97: 40–54

    PubMed  CAS  Google Scholar 

  91. Oyama N, Akino H, Suzuki Y et al. (2001) FDG PET for evaluating the change of glucose metabolism in prostate cancer after androgen ablation. Nucl Med Comm 22: 963–969

    CAS  Google Scholar 

  92. Oyama N, Akino H, Kanamaru H et al. (2002) 11C-acetate PET imaging of prostate cancer. J Nucl Med 43: 181–186

    PubMed  CAS  Google Scholar 

  93. Oyama N, Akino H, Suzuki Y et al. (2002) Prognostic value of 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomography imaging for patients with prostate cancer. Mol Imaging Biol 4: 99–104

    PubMed  Google Scholar 

  94. Oyama N, Miller TR, Dedashti F et al. (2003) 11C-Acetate PET imaging of prostate cancer:detection of recurrent disease at PSA relapse. J Nucl Med 44: 549–555

    PubMed  CAS  Google Scholar 

  95. Pantuck AJ, Berger F, Zisman A et al. (2002) CL1-SR39: a nonivasive molecular imaging model of prostate cancer suicide gene therapy using positron emission tomography. J Urol 168: 1193– 1198

    PubMed  CAS  Google Scholar 

  96. Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3(1): 1–7

    PubMed  CAS  Google Scholar 

  97. Pelosi E, Messa C, Sironi Set et al. (2004) Value of integrated PET/CT for lesion localisation in cancer patients: a comparative study. Eur J Nucl Med Mol Imaging 31: 932–939

    PubMed  Google Scholar 

  98. Picchio M, Treiber U, Beer A-J et al. (2006) Value of 11C-choline PET and contrast-enhanced CT for staging of bladder cancer: correlation with histopathological findings. J Nucl Med 47: 938

    PubMed  CAS  Google Scholar 

  99. Ponde DE, Dence CS, Oyama N et al. (2007) 18F-fluoroacetate: a potential acetate analog for prostate tumor imaging –in vivo evaluation of 18F-fluoroacetate versus 11C-acetate. J Nucl Med 48: 420

    PubMed  CAS  Google Scholar 

  100. Poulakis V, Witzsch U, Becht E (2002) Prävention des Prostatakarzinoms durch Ernährung. Hess Ärztebl 7: 395–402

    Google Scholar 

  101. Ragde H, Elgamal A, Scow PB et al. (1998) Ten-year disease free survival after transperineal sonography-guided iodine-125 brachytherapy with or without 45-gray external beam irradiation in the treatment of patients with clinically localized, low to high Gleason grade prostate carcinoma. Cancer 83: 989– 1000

    PubMed  CAS  Google Scholar 

  102. Reske SN (2008) [11C]choline uptake with PET/CT for the initial diagnosis of prostate cancer: relation to PSA levels, tumour stage and antiandrogenic therapy. Eur J Nucl Med Mol Imaging 35: 1740

    PubMed  Google Scholar 

  103. Reske SN, Blumstein NM, Neumaier B al at (2006) Imaging prostate cancer with 11C-choline PET/CT. J Nucl Med 47: 1249–1254

    PubMed  CAS  Google Scholar 

  104. Ridker PM, Cannon CP et al. (2005) C-reactive protein levels and outcomes after statin therapy. N Engl J Med 352(1): 20

    PubMed  CAS  Google Scholar 

  105. Römer W, Beckmann MW, Forst R et al. (2005) SPECT/Spiral-CT hybrid imaging in unclear foci of increased bone metabolism: A case report. Röntgenpraxis 55: 234–237

    PubMed  Google Scholar 

  106. Sala E, Eberhardt C, Akin O et al. (2006) Endorectal MR Imaging before salvage prostatectomy Radiol 238: 176–183

    Google Scholar 

  107. Sauerbrunn BJL, Andrews GA, Hubner KF (1978) Ga-67 citrate imaging in tumors of the genitourinary tract: report of cooperative study. J Nucl Med 19: 470

    PubMed  CAS  Google Scholar 

  108. Scheidler J, Hricak H, Vigneron DB et al. (1999) Prostate cancer: localization with three-dimensional proton MR spectroscopic imaging – clinicopathologic study. Radiology 213: 473–480

    PubMed  CAS  Google Scholar 

  109. Scher B, Seitz M, Albinger W et al. (2007) Value of 11C-choline PET and PET/CT in patients with suspected prostate cancer. Eur J Nucl Med Mol Imaging 34: 45–53

    PubMed  Google Scholar 

  110. Scher B, Seitz M, Herzog R et al. (2005) (F18) FDG-PET/CT: Funktionelle Bildgebung zum Staging von Patienten mit Peniskarzinom (Abstr). Nuklearmedizin 44: V89

    Google Scholar 

  111. Schmid DT, John H, Zweifel R et al. (2004) 18F-Fluorocholine PET/CT: local functional-pathological correlation and whole body distribution in patients with prostate cancer (Abstr. 206). Eur J Nucl Med Mol Imaging 31 (Suppl 2): S252–253

    Google Scholar 

  112. Schmücking M, Baum RP, Griesinger F et al. (101007/b) Molecular whole body cancer staging using positron emission tomography: Consequences for therapeutic management and metabolic radiation treatment planning. Recent Res Cancer Res. doi: 108741-0019

    Google Scholar 

  113. Schroeder F (1997) The European randomized study of screening prostate cancer (ERSCP). Br J Radiol 92: 68–71

    Google Scholar 

  114. Schwartz MK (1995) Current status of tumour markers. Scand J Clin Lab Invest 221 (Suppl): 5–14

    CAS  Google Scholar 

  115. Schweyer S, Fayyazi A (2005) Pathogenese maligner Keimzelltumoren des Hodens. Dtsch Ärztebl 102: A2404–2407

    Google Scholar 

  116. Scopinaro F, De Vincentis G, Varvarigou AD et al. (2003) 99mTcbombesin detects prostate cancer and invasion of pelvic lymphnodes. Eur J Nucl Med 30: 1378–1382

    Google Scholar 

  117. Shen YY, Su CT, Chen GJ et al. (2003) The value of 18F-fluordeoxyglucose positron emission tomography with additional help of tumor markers in cancer screening. Neoplasia 50: 217–221

    CAS  Google Scholar 

  118. Shreve PD, Grossman HB, Gross MD et al. (1996) Metastatic prostate cancer: initial findings of PET with 2-deoxy-2-[F-18]fluoro D-glucose. Radiology 199: 751–756

    PubMed  CAS  Google Scholar 

  119. Stamey TA, Dietrick DD, Issa MM (1993) Large, organ confined, impalpable transition zone prostate cancer: association with metastatic levels of prostate specific antigen. J Urol 149: 510–515

    PubMed  CAS  Google Scholar 

  120. Stamey TA, Graves HCB, Wehner N, Ferrari M, Freiha FS (1993) Early detection of residual prostate cancer after radical prostatectomy by an ultrasensitive assay for prostate specific antigen. J Urol 149: 787–792

    PubMed  CAS  Google Scholar 

  121. Stöckle M, Lehmann J, Krege S et al. (2007) Therapie und Prognose des lymphogen metastasierten Harnblasenkarzinoms. Dtsch Ärztebl 104(14): A959–A963

    Google Scholar 

  122. Thie JA, Hubner KF, Isidoro FP, Smith GT (2007) A weight index for the standardized uptake value in 2-deoxy-2-(F-18)fluoro-D-glucose positron emission tomography. Mol Imaging Biol 9: 91–98

    PubMed  Google Scholar 

  123. Thilmann C, Oelfke U, Huber P, Debus J (2006) Intensitätsmodulierte Strahlenbehandlung – neue Perspektiven für die Tumortherapie. Dtsch Ärztebl 103(48): A3268–A3273

    Google Scholar 

  124. van Tinteren H, Hoekstra OS, Smit EF et al. (2002) Effectiveness of positron emission tomography in the preoperative assessment of patients with suspected non small cell lung cancer: The PLUS multicentre randomized trial. Lancet 359: 1388–1392

    PubMed  Google Scholar 

  125. van Tinteren H et al. (2004) Do we need randomized trials to evaluate diagnostic procedures (for/against). Eur J Nucl Med Mol Imaging 31: 129–135

    PubMed  Google Scholar 

  126. Tokunaga M, Yasuda M, Miyakita H et al. (2005) Screening program of prostate cancer at Tokai University Hospital: characterization of prostate-specific antigen measurement. Tokai J Exp Clin Med 30: 103–110

    PubMed  Google Scholar 

  127. Tolvanen T, Sutinen E, Lehikoinen P et al (2004) Human radiation dose of a 11C choline. PET study (Abstr.136). Eur J Nucl Med Mol Imaging 31 (Suppl 2): S234

    Google Scholar 

  128. Varvarigou AD et al. (2003) 99mTc-bombesin detects prostate cancer and invasion of pelvic lymphnodes. Eur J Nucl Med Mol Imaging 30: 1378

    PubMed  Google Scholar 

  129. Wang L, Mullerad M, Chen H et al. (2004) Prostate cancer: incremental value of endorectal MR imaging findings for prediction of exracapsular extension. Radiology 232: 133–139

    PubMed  Google Scholar 

  130. Wang Y, Chiu E, Rosenberg J et al. (2007) Standardized upake value atlas: characterization of physiological 2-deoxy-2-[18F] fluoro-D-glucose uptake in normal tissues. Mol Imaging Biol 9: 83–90

    PubMed  Google Scholar 

  131. Wawroschek F, Vogt H, Weckermann D et al. (1999) Wie sicher ist die modifizierte pelvine Lymphadenektomie beim Prostatakarzinom? Ergebnisse eines neuen Staging-Verfahrens. Akt Urol 30: 1–2

    Google Scholar 

  132. Wawroschek F, Wengenmair H, Senekowitsch-Schmidtke R et al. (2003) Prostate lymphoscintigraphy and radioguided surgery for sentinel symphnode identification in prostate cancer. Technique and results of the first 350 cases. Urol Int 70: 303–310

    PubMed  Google Scholar 

  133. Wefer AE, Hricak H, Vigneron DB et al. (2000) Sextant localization of prostate cancer: comparison of sextant biopsy, magnetic resonance imaging and magnetic resonance spectroscopy imaging with step section histology. J Urol 164: 388

    Google Scholar 

  134. Welch MJ, Coleman RE, Straatman MG, Asberry BE, Primeau JL, Fair WR, Ter-Pogossian MM (1977) Carbon-11 labeled methylated polyamine analogs: Uptake in prostate and tumor in animal models. J Nucl Med 18: 74–78

    PubMed  CAS  Google Scholar 

  135. Wilson CB, Young HE, Ott RJ et al. (1995) Imaging metastatic testicular germ cell tumors with 18F-FDG positron emission tomography:prospects for detection and management. Eur J Nucl Med 22: 508–513

    PubMed  CAS  Google Scholar 

  136. Yeh SDJ, Imbriaco M, Garza D et al. (1995) Twenty percent of bone metastases of hormone resistant prostate cancer are detected by PET-FDG whole body scanning (Poster Abstr. No 891). J Nucl Med: 198P

    Google Scholar 

  137. Yamaguchi T, Lee J, Uemura H et al. (2005) Prostate cancer: a comparative study of 11C-choline PET and MR imaging combined with proton MR spectroscopy. J Nucl Med 46: 742–748

    Google Scholar 

  138. Yoshimoto M, Waki A, Yonekura Y et al. (2001) Characterization of acetate metabolism in tumor cells in relation to cell proliferation. Nucl Med Bio 28: 117–122

    CAS  Google Scholar 

  139. Yoshimoto M, Waki A, Obata A et al. (2004) Radiolabeled choline as a proliferation marker: comparison with radiolabeled acetate. Nucl Med Biol 31: 859–865

    PubMed  CAS  Google Scholar 

  140. Zanzonico PB, Finn R, Pentlow KS et al. (2004) PET-based radiation dosimetry in man of 18F-fluorodidydrotestosterone, a new radiotracer for imaging prostate cancer. J Nucl Med 45: 1966– 1971

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mohnike, W., Hör, G., Schelbert, H. (2011). Urologie. In: PET/CT-Atlas. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17805-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17805-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17804-7

  • Online ISBN: 978-3-642-17805-4

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics