Skip to main content

Mikrobiologie und Biochemie des Kohlenstoffkreislaufes

  • Chapter
Mikrobiologie von Böden

Part of the book series: Springer-Lehrbuch ((SLB))

Zusammenfassung

Der globale CO2-C-Gehalt in der Atmosphäre (Abb. 10.1) wird heute auf etwa 700 bis 800 Pg C (1 Petagramm = 1015 g = 1 Giga-t C) geschätzt, was im Vergleich zum C-Gehalt in den globalen terrestrischen Ökosystemen (ca. 1000 bis 2300 Pg C) und in den weltweiten Ozeanen (ca. 39 000 bis 41 000 Pg C) relativ gering ist. Ursache dieser sehr geringen atmosphärischen CO2-Konzentration von etwa 0,0383 Vol.-% (bei 78,09 Vol.-% N2 und 20,95 Vol.-% O2) ist die sehr effiziente CO2-Fixierung durch die oxygenen Photosyntheseprozesse (Primärproduktion PP) (Gl. 10.1)

6 CO2 + 6 H2O ↔ C6H12O6 + 6 O2 (10.1)

wodurch das globale Fließgleichgewicht eindeutig auf der rechten Seite liegt und CO2 für die pflanzliche Biomasse in den terrestrischen und aquatischen Ökosystemen zum wachstumsbegrenzenden Faktor geworden ist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 74.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Adams JJ, Pal G, Jia Z, Smith SP (2006) Mechanism of bacterial cell-surface attachment revealed by structure of cellulosomal typ II cohesin-dockerin complex. Proc Natl Acad Sci USA 103: 305–310

    Article  PubMed  CAS  Google Scholar 

  • Ajwa HA, Tabatabai MA (1994) Decomposition of different organic materials in soils. Biol Fertil Soils 18: 175–182

    Article  Google Scholar 

  • Alexander M (1994) Biodegradation and bioremediation. Academic Press, San Diego New York Boston

    Google Scholar 

  • Amundson R (2001) The carbon budget in soils. Annu Rev Earth Planet Sci 29: 535–562

    Article  CAS  Google Scholar 

  • Aro N, Pakula T, Penttila M (2005) Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev 29: 719–737

    Article  PubMed  CAS  Google Scholar 

  • Baldrian P (2006) Fungal laccases – occurrence and properties. FEMS Microbiol Rev 30: 215–242

    Article  PubMed  CAS  Google Scholar 

  • Baldrian P, Valásková V (2008) Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev 32: 501–521

    Article  PubMed  CAS  Google Scholar 

  • Bardgett RD, Usher MB, Hopkins DW (2005) Biological diversity and function in soils, Cambridge Univ Press, Cambridge

    Book  Google Scholar 

  • Bayer EA, Belaich JP, Shoam Y, Lamed R (2004) The cellulosomes: Multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58: 521–554

    Article  PubMed  CAS  Google Scholar 

  • Bergquist PL, Gibbs MD, Morris DD, Te’o VSJ, Saul DJ, Morgan HW (1999) Molecular diversity of thermophilic cellulolytic and hemicellulolytic bacteria. FEMS Microbiol Rev 28: 99–110

    CAS  Google Scholar 

  • Cao M, Woodward FI (1998) Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 393: 249–252

    Article  CAS  Google Scholar 

  • Coale KH, Johnson KS, Chavez FP, Buesseler KO, Barber RT, Brezenski MA, Cochlan WP et al. (2004). Southern ocean iron enrichment experiment: Carbon cycling in high- and low-Si waters. Science 304: 408–414

    Article  PubMed  CAS  Google Scholar 

  • Cisneros-Dozal LM, Trumbore S, Hanson PJ (2006) Partitioning sources of soil-respired CO2 and their seasonal variation using an unique radiocarbon tracer. Global Change Biol 12: 194–204

    Article  Google Scholar 

  • Cubasch U, Kasang D (2000) Anthropogener Klimawandel, Gotha, Stuttgart

    Google Scholar 

  • Davidson EA, Janssens IA, Luo Y (2006) On the variability of respiration in terrestrial ecosystems: Moving beyond Q10. Global Change Biol 12: 154–164

    Article  Google Scholar 

  • Dilly O (2001) Microbial respiratory quotient during basal metabolism and after glucose amendment in soils and litter. Soil Biol Biochem 33: 117–127

    Article  CAS  Google Scholar 

  • Dilly O (2005) Microbial energetics in soils. In: Buscot F, Varma A (Hrsg) Microorganisms in soils: Role in genesis and functions, Springer, Berlin Heidelberg, S 123–138

    Chapter  Google Scholar 

  • Eggeling L (1983) Lignin – an exceptional biopolymer and a rich resource? Trends Biotechnol 1: 123–127

    Article  CAS  Google Scholar 

  • Fierer N, Schimel JP(2002) Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biol Biochem 34: 777–787

    Article  CAS  Google Scholar 

  • Fierer N, Schimel JP (2003) Aproposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil. Soil Sci Soc Am J 67: 798–805

    Article  CAS  Google Scholar 

  • Galhaup C, Wagner H, Hinterstoisser B, Haltrich D (2002) Increased production of laccase by the wood-degrading basidiomycete Trametes publescens. Enzyme Microb Technol 30: 529–536

    Article  CAS  Google Scholar 

  • Guillen F, Toribio VG, Martinez MJ, Martinez AT (2000) Production of hydroxyl radical by the synergistic action of fungal laccase and aryl alcohol oxidase. Arch Biochem Biophys 383: 142–147

    Article  PubMed  CAS  Google Scholar 

  • Hahn V, Högberg P, Buchmann N (2006) 14 C – a tool for separation of autotrophic and heterotrophic soil respiration. Glob Change Biol 12: 972–982

    Article  Google Scholar 

  • Haider K (1988) Der mikrobielle Abbau des Lignins und seine Bedeutung für den Kreislauf des Kohlenstoffes. Forum Mikrobiol 11: 477–482

    CAS  Google Scholar 

  • Harada KM, Tanaka K, Fukuda Y, Hashimoto W, Murata K (2005) Degradation of rice bran hemicellulose by Paenibacillus sp. strain HC1: Gene Cloning, characterization and function of β-D-glucosidase as an enzyme involved in degradation. Arch Microbiol 184: 215–224

    Article  PubMed  CAS  Google Scholar 

  • Hofrichter M (2002) Review: Lignin conversion by manganese peroxidase (MnP). Enzyme Microb Technol 30: 454–466

    Article  CAS  Google Scholar 

  • Horwath W (2007) Carbon cycling and formation of soil organic matter. In: Paul EA (Hrsg) Soil microbiology, ecology, and biochemistry, Academic Press, Elsevier, S 303–339

    Google Scholar 

  • Houghton RA (2007) Balancing the global carbon budget. Annu Rev Earth Planet Sci 35: 313–347

    Article  CAS  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2001) Climate change 2001. The scientific base. Chapter 3, the carbon cycle and atmospheric carbon dioxide. Third assessment report of the IPCC, Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2007) Climate change 2007. The physical science basis, S 996

    Google Scholar 

  • Jacobeit J (2002) Klimawandel – natürlich bedingt, vom Menschen beeinflusst. In: Löffler G & Voßmerbäumer H (Hrsg) Mit unserer Erde leben, Würzburg, S 165–184

    Google Scholar 

  • Janssens IA, Pilgegaard K (2003) Large seasonal changes in Q10 of soil respiration in a beech forest. Global Change Biol 9: 911–918

    Article  Google Scholar 

  • Janzen HH (2004) Carbon cycling in earth systems – a soil science perspective. Agric Ecosyst Environ 104: 399–417

    Article  CAS  Google Scholar 

  • Kersten P, Cullen D (2007) Extracellular oxidative systems of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Fugal Gen Biol 44: 77–87

    Article  CAS  Google Scholar 

  • Khalil MI, Hossain MB, Schmidhalter U (2005) Carbon and nitrogen mineralization in different upland soils of the subtropics treated with organic materials. Soil Biol Biochem 37: 1507–1518

    Article  CAS  Google Scholar 

  • Knorr W, Prentice IG, House JI, Holland EA (2005) Long-term sensitivity of soil carbon turnover to warming. Nature 433: 298–301

    Article  PubMed  CAS  Google Scholar 

  • Kögel-Knabner I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34: 139–162

    Article  Google Scholar 

  • Kroonenberg S (2008) Der lange Zyklus: Die Erde in 10 000 Jahren. Primus, Darmstadt

    Google Scholar 

  • Kuikman PJ, Jansen AG, van Veen JA, Zehnder AJB (1990) Protozoen predation and the turnover of soil organic carbon and nitrogen in the presence of plants. Biol Fertil Soils 10: 22–28

    CAS  Google Scholar 

  • Kuzyakov Y (2006) Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol Biochem 38: 425–448

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Domanski G (2002) Model for rhizodeposition and CO2 efflux from planted soil and its validation by 14 C pulse labelling of ryegrass. Plant Soil 239: 87–102

    Article  CAS  Google Scholar 

  • Lee MS, Nakane K, Nakatsubo T, Koizumi H (2003) Seasonal changes in the contribution of root respiration to total soil respiration in a cool-temperate deciduous forest. Plant Soil 255: 311–318

    Article  CAS  Google Scholar 

  • Loftfield NS, Brumme R, Beese F (1992) Automated monitoring of nitrous oxide and carbon dioxide flux from forest soils. Soil Sci Soc Am J 56: 1147–1150

    Article  Google Scholar 

  • Martinez AT (2002) Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme Microbiol Technol 30: 425–444

    Article  CAS  Google Scholar 

  • Martinez AT, Speranza M, Ruiz-Duenas J, Ferreira P et al. (2005) Biodegradation of lignocellulosics: Microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Intern Microbiol 8: 195–204

    CAS  Google Scholar 

  • McErlean C, Marchant R, Banat IM (2006) An evaluation of soil colonisation potential of selected fungi and their production of lignolytic enzymes for use in soil bioremediation application. Antonie van Leeuwenhoek 90: 147–158

    Article  PubMed  CAS  Google Scholar 

  • Meyer L, Schaffer G (1954) Atmungskurven des Bodens unter dem Einfluss von Düngung und Bewachsung. Landwirtsch Forsch 6: 81–95

    CAS  Google Scholar 

  • Miltner A, Kopinke FD, Kindler R, Selesi D, Hartmann A, Kästner M (2005) Non-phototrophic CO2 fixation by soil microorganisms. Plant Soil 269: 193–203

    Article  CAS  Google Scholar 

  • Müller C, Abbasi MK, Kammann C, Clough TJ, Sherlock RR, Stevens RJ, Jäger HJ (2004) Soil respiratory quotient determined via barometric process separation combined with nitrogen-15-labeling. Soil Sci Soc Am J 68: 1610–1615

    Article  Google Scholar 

  • Murashima K, Kosugi A, Doi RH (2002) Determination of subunit composition of Clostridium celluvorans cellulosomes that degrade plant cell walls. Appl Environ Microbiol 68: 1610–1615

    Article  PubMed  CAS  Google Scholar 

  • Murray WD (1986) Symbiotic relationship of Bacteroides cellulosolvens and Clostridium saccharolyticum in cellulose fermentation. Appl Environ Microbiol 51: 710–714

    PubMed  CAS  Google Scholar 

  • Nieder R, Benbi DK (2008) Carbon and nitrogen in the terrestrial environment, Springer Netherlands

    Book  Google Scholar 

  • Nüske J, Scheibner K, Dornberger U, Ulrich R, Hofrichter M (2002) Large scale production of manganese-peroxidase using agaric white-rot fungi. Enzym Microb Technol 30: 556–561

    Article  Google Scholar 

  • Orth AB, Royse DJ, Tien M (1993) Ubiquity of lignin-degrading peroxidases among various wood-degrading fungi. Appl Environ Microbiol 59: 4017–4023

    PubMed  CAS  Google Scholar 

  • Ottow JCG (1997) Abbaukinetik und Persistenz von Fremdstoffen in Böden. In: Ottow JCG, Bidlingmaier W (Hrsg) Umweltbiotechnologie, G. Fischer, Stuttgart, S 97–138

    Google Scholar 

  • Paul EA, Clark FE (1989) Soil microbiology and biochemistry. Acad Press, San Diego New York Berkeley

    Google Scholar 

  • Paul EA, Juma NG (1981) Mineralization and immobilization of soil nitrogen by microorganisms. Ecol Bull (Stockholm) 33: 179–195

    CAS  Google Scholar 

  • Plante AF, Parton WJ (2007) The dynamics of soil organic matter and nutrient cycling. In: Paul EA (Hrsg) Soil microbiology, ecology, and biochemistry. Academic Press, Elsevier, Oxford, S 433–467

    Google Scholar 

  • Persson T (1989) Role of soil animals in C and N mineralization. Plant Soil 115: 241–245

    Article  Google Scholar 

  • Sauerbeck DR, Gonzalez MA (1977) Field decomposition of carbon-14-labelled plant residues in various soils of the Federal Republic of Germany and Costa Rica. In: Proceeding of a symposium on soil organic matter studies, International Atomic Energy Agency and FAO (Hrsg), Vol. I, Soil organic matter studies, IAEA, Wien, S 159–170

    Google Scholar 

  • Sauerbeck DR, Johnen B (1976) Der Umsatz von Pflanzenwurzeln im Laufe der Vegetationsperiode und dessen Beitrag zur Bodenatmung. Z Pflanzenernähr Bodenk 3: 315–328

    Article  Google Scholar 

  • Schinner F, Öhlinger R, Kandeler E, Margesin R (Hrsg) (1993) Bodenbiologische Arbeitsmethoden, 2. Aufl. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Schlesinger WH, Andrews JA (2000) Soil respiration and global carbon cycle. Biogeochem 48: 7–20

    Article  CAS  Google Scholar 

  • Schwarz W (2003) Das Cellulosom – Eine nano-Maschine zum Abbau von Cellulose. Naturwiss Rundsch 56: 121–128

    Google Scholar 

  • Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6: 219–228

    Article  PubMed  CAS  Google Scholar 

  • Tuomela M, Oivanen P, Hatakka A (2002) Degradation of synthetic 14 C-lignin by various white-rot fungi in soil. Soil Biol Biochem 34: 1613–1620

    Article  CAS  Google Scholar 

  • Vollmer W, Joris B, Charlier P, Foster S (2008) Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol Rev 32: 259–286

    Article  PubMed  CAS  Google Scholar 

  • Wagner F, Sistig P (1979) Verwertung von Cellulose durch Mikroorganismen. Forum Mikrobiol 2: 74–80

    CAS  Google Scholar 

  • Werth M, Kuzyakov Y (2008) Root-derived carbon in soil respiration and microbial biomass determined by 14 C and 13 C. Soil Biol Biochem 40: 625–637

    Article  CAS  Google Scholar 

  • Wirth SJ (2001) Regional-scale analysis of soil microbial biomass and soil basal CO2-respiration in Northeastern Germany. In: Stott DE, Mohtar RH, Steinhardt GC (Hrsg) Sustaining the global farm. Selected papers from 10th Intern Soil Conserv Organ Meeting 1999, Purdue University and USDA-ARS National Soil Erosion Res Lab, S 486–493

    Google Scholar 

  • Yelle DJ, Ralph J, Lu F, Hammel KE (2008) Evidence for cleavage of lignin by a brown rot basidiomycete. Environ Microbiol 10: 1844–1849

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ottow, J. (2011). Mikrobiologie und Biochemie des Kohlenstoffkreislaufes. In: Mikrobiologie von Böden. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00824-5_10

Download citation

Publish with us

Policies and ethics