Skip to main content

Grundlagen der Nieren- und Leberdialyse

  • Chapter
Medizintechnik

Zusammenfassung

Die Dialyse ist ein künstliches Blutreinigungsverfahren, das sowohl mit der Nachahmung physiologischer Vorgänge als auch mit der Benutzung bestimmter physikalisch- chemischer Gesetze arbeitet. Ihre technische Umsetzung in einer Dialysemaschine sowie chirurgische und internistische Interventionen gehören zu dem Zusammenspiel unterschiedlicher Disziplinen, die eine Dialyse ermöglichen. Die Grundlagen des Dialyseverfahrens, die Maschine und die Unterschiede von Nieren- und Leberdialyse sollen im Folgenden erklärt werden. Heute besteht in der Bundesrepublik Deutschland bei ca. 55.000 Patienten ein chronisch dialysepflichtiges Nierenversagen (Stand 2005). Das Leben dieser Patienten kann mit der Dialyse um Jahrzehnte verlängert werden. Damit ist die Nierendialyse eines der erfolgreichsten medizintechnischen Verfahren. Bei der Leberdialyse sind ebenbürtige Erfolge noch nicht erzielt worden. Umso wichtiger ist es, hier neue Wege zu finden, um auch für Leberpatienten ein effizientes Dialyseverfahren zu etablieren.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  1. Cooney, D.O., Biomedical engineering principles: an introduction to fluid, heat, and mass transport processes. 2, Dekker, New York [u. a.], 1976, S. 458

    Google Scholar 

  2. (DSO), Bundesweiter Jahresbericht der Deutschen Stiftung Organtransplantation www.dso.de, 2006,

    Google Scholar 

  3. Kolff, W.J., The invention of the artificial kidney. Int J Artif Organs, 13 (6), 1990, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list _uids=2199377 S. 337–43

    Google Scholar 

  4. Feely, T., Copley, A., Bleyer, A.J., Catheter lock solutions to prevent bloodstream infections in high-risk hemodialysis patients. Am J Nephrol, 27 (1), 2007, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17215571 S. 24–9

    Article  Google Scholar 

  5. Stegmayr, B.G., A survey of blood purification techniques. Transfus Apher Sci, 32 (2), 2005, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15784456 S. 209–20

    Article  Google Scholar 

  6. Hughes, R.D., Pucknell, A., Routley, D., et al., Evaluation of the BioLogic-DT sorbent-suspension dialyser in patients with fulminant hepatic failure. Int J Artif Organs, 17 (12), 1994, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7759146 S. 657–62

    Google Scholar 

  7. Fischer, K.G., Essentials of anticoagulation in hemodialysis. Hemodial Int, 11 (2), 2007, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17403168 S. 178–89

    Article  Google Scholar 

  8. Oo, T.N., Smith, C.L., Swan, S.K., Does uremia protect against the demyelination associated with correction of hyponatremia during hemodialysis? A case report and literature review. Semin Dial, 16 (1), 2003, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12535304 S. 68–71

    Article  Google Scholar 

  9. Pedrini, L.A., On-line hemodiafiltration: technique and efficiency. J Nephrol, 16 Suppl 7, 2003, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14733302 S. S57–63

    Google Scholar 

  10. Deutsche Arbeitsgemeinschaft für Klinische Nephrologie e.V., Band XXXV/2006, Vandenhoeck & Ruprecht, Göttingen, 2006

    Google Scholar 

  11. Busse, C., Blutreinigungssysteme. In: Medizintechnik – Verfahren, Systeme, Informationsverarbeitung, Kramme R. (Hrsg.), Springer Berlin, 2007, S. 443–458

    Google Scholar 

  12. Hoenich, N., Thompson, J., Varini, E., et al., Particle spallation and plasticizer (DEHP) release from extracorporeal circuit tubing materials. International Journal for Artificial Organs, 13, 1990, S. 55–62

    Google Scholar 

  13. Ljunggren, L., Plasticizer migration from blood lines in hemodialysis. Artificial Organs, 8, 1984, S. 99–102

    Article  Google Scholar 

  14. Flaminio, L.M., De Angelis, L., Ferazza, M., et al., Leachability of a new plasticizer tri-(2-ethylhexyl)-trimellitate from haemodialysis tubing. International Journal for Artificial Organs, 11, 1988, S. 435–439

    Google Scholar 

  15. Hildenbrand, S.L., Lehmann, H.D., Wodarz, R., et al., PVC-plasticizer DEHP in medical products: Do thin coatings really reduce DEHP leaching into blood? Perfusion, 20, 2005, S. 351–357

    Article  Google Scholar 

  16. Balakrishnan, B., Kumar, D.S., Yoshida, Y., et al., Chemical modification of poly(vinyl chloride) resin using poly(ethylene glycol) to improve blood compatibility. Biomaterials, 26, 2005, S. 3495–3502

    Article  Google Scholar 

  17. Hoenich, N., The extracorporeal circuit: Materials, problems, and solutions. Hemodialysis INternational, 11, 2007, S. 26–31

    Article  Google Scholar 

  18. Meyer, G., Hämodialyse: Technik und Anwendung; ein Kompendium für Ärzte, Pflegepersonal und Techniker. 1. Auflage ed, Pabst, Berline, 1994

    Google Scholar 

  19. Ricci, Z., Salvatori, G., Bonello, M., et al., A new machine for continuous renal replacement therapy: from development to clinical testing. Expert Rev.Med.Devices, 2 (1), 2005, S. 47–55

    Article  Google Scholar 

  20. Roberts, M., Winney, R.J., Errors in fluid balance with pump control of continuous hemodialysis. The International Journal of Artificial Organs, 15 (2), 1992, S. 99–102

    Google Scholar 

  21. Depner, T.A., Rizwan, S., Stasi, T.A., Pressure effects on roller pump blood flow during hemodialysis. ASAIO Trans, 36 (3), 1990, S. M456–9

    Google Scholar 

  22. Sands, J., Glidden, D., Jacavage, W., et al., Difference between delivered and prescribed blood flow in hemodialysis. ASAIO Journal, 42 (5), 1996, http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-0030250793&partnerID=40&rel=R5.6.0

    Google Scholar 

  23. Polaschegg, H.D., Levin, N.W., Hemodialysis machines and monitors. In: Replacement of Renal Funcion by Dialysis, Winchester J.F.H., W.H.; Koch, K.M.; Lindsay, R.M.; Ronco, C (Hrsg.), Kluwer Academic Publishers, Dordrecht, 2004, S. 325–449

    Google Scholar 

  24. Breuch, G., Fachpflege Nephrologie und Dialyse, 3. Auflage, Urban & Fischer Verlag, München, 2003

    Google Scholar 

  25. Misra, M., The basics of hemodialysis equipment. Hemodialysis INternational, (9), 2005, S. 30–36

    Google Scholar 

  26. Polaschegg, H.D., Machines for hemodialysis. Contrib Nephrol, 149, 2005, S. 18–26

    Article  Google Scholar 

  27. EC 60601-2-16:1998. Medical electrical equipment. Part 2:Particular requirements for safety of haemodialysis equipment, 1998

    Google Scholar 

  28. ANSI/AAMI, American National Standard. Hemodialysis Systems, 2007

    Google Scholar 

  29. Curtis, J., Delaney, K., O´Kane, P., et al., Hemodialysis devices. In: Core Curriculum for the Dialysis Technician: A Comprehensive Review of Hemodialysis, (Hrsg.), Medical Education Institute, Inc., Medison, WI, 2006, S. 89–117

    Google Scholar 

  30. Daugirdas, J.T., Van Stone, J.C., Boag, J.T., Hemodialysis apparatus. In: Handbook of Dialysis, Daugirdas J.T.B., P.G.; Ing, T.S. (Hrsg.), Lippincott Williams & Wilkins, Philadelphia, PA, 2001, S. 48

    Google Scholar 

  31. Kramer, P., Wigger, W., Matthaei, D., et al., Clinical experience with continuously monitored fluid balance in automatic hemofiltration. Artif Organs, 2 (2), 1978, S. 147–9

    Article  Google Scholar 

  32. Streicher, E., Vorrichtung zur Substitution identischer Volumina bei Dialyse und Blutdiafiltration. Berghof GmbH, Deutschland, 1978

    Google Scholar 

  33. Beden, J., Flaig, J.J., Polaschegg, J.D., et al., Volumetric fluid balancing for hemo- and plasmafiltration. 2nd European Conference on Engineering and MEdicine, Stuttgart, 25–29 April, 1993

    Google Scholar 

  34. Gambro, Centrosystem 3 Dialysis Control Unit, Maintenance and Troubleshooting Service Manual, Gambro, Inc., Lakewood, CO, 1991–2001

    Google Scholar 

  35. Locatelli, F., Buoncristiani, U., Canaud, B., et al., Haemodialysis with on-line monitoring equipment: tools or toys? Nephrology Dialysis Transplantation, 20, 2005, S. 22–33

    Article  Google Scholar 

  36. Locatelli, F., Di Filippo, S., Manzoni, C., et al., Monitoring soidum removal and delivered dialysis by conductivity. International Journal for Artificial Organs, 18, 1995, S. 716–721

    Google Scholar 

  37. Johner, C., Chamney, P.W., Schneditz, D., et al., Evaluation of an ultrasonic blood volume monitor. Nephrology Dialysis Transplantation, 13, 1998, S. 2098–2103

    Article  Google Scholar 

  38. Andrulli, S., Colzani, S., Mascia, F.e.a., The role of blood volume reduction in the genesis of intradialytic hypotension. American Journal for Kidney Dialysis, 40, 2002, S. 1244–1254

    Article  Google Scholar 

  39. Basile, C.G., R.; Vernaglione, L. et al, Efficacy and safety of haemodialysis treatment with the Hemocontrol biofeedback system: a prospective medium-term study. Nephrology Dialysis Transplantation, 16, 2001, S. 328–334

    Article  Google Scholar 

  40. Ronco, C., Brendolan, A., Milan, M., et al., Impact of biofeedback-induced cardiovascular stability on hemodialysis tolerance and efficiency. Kidney International, 58, 2000, S. 800–808

    Article  Google Scholar 

  41. Santoro, A., Mancini, E., Basile, C., et al., Blood volume controlled hemodialysis in hypotension-prone patients: a randomized, multicenter controlled trial. Kidney International, 62, 2002, S. 1034–1045

    Article  Google Scholar 

  42. Krämer, M., Wiederherstellung von Nierenfunktionen. In: Kooperative und autonome Systeme in der Medizintechnik, Werner J. (Hrsg.), Oldenbourg Verlag, München, 2005, S. 277–348

    Google Scholar 

  43. Kapoor, D., Molecular adsorbent recirculating system: Albumin dialysis-based extracorporeal liver assist device. Journal of Gastroenterology and Hepatology, 17 (3), 2002, S. 280–286

    Article  Google Scholar 

  44. Tersteegen, B., Endert, G., Verfahren zur Herstellung von Dialysierflüssigkeit zur Verwendung in Haemodialysegeräten sowie Vorrichtung zur Durchfuehrung des Verfahrens. Tersteegen, B., Deutschland, 1983

    Google Scholar 

  45. Fassbinder, W., Experience with the GENIUS® Hemodialysis System. Kidney & Blood Pressure Research, 26, 2003, S. 96–99

    Article  Google Scholar 

  46. Dhondt, A., Eloot, S., Wachter, D.D., et al., Dialysate partitioning in the Genius batch hemodialysis system: effect of temperature and solute concentration. Kidney Int, 67 (6), 2005, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15882294 S. 2470–6

    Article  Google Scholar 

  47. Eloot, S., Dhondt, A., Vierendeels, J., et al., Temperature and concentration distribution within the Genius(R) dialysate container. Nephrol Dial Transplant, 2007, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17567650

    Google Scholar 

  48. Kielstein, J.T., Linnenweber, S., Schoepke, T., et al., One for all – a multi-use dialysis system for effective treatment of severe thallium intoxication. Kidney Blood Press Res, 27 (3), 2004, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15256818 S. 197–9

    Article  Google Scholar 

  49. Kleophas, W., Backus, G., A simplified method for adequate hemodialysis. Blood Purif, 19 (2), 2001, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11150808 S. 189–94

    Article  Google Scholar 

  50. Lonnemann, G., Floege, J., Kliem, V., et al., Extended daily veno-venous high-flux haemodialysis in patients with acute renal failure and multiple organ dysfunction syndrome using a single path batch dialysis system. Nephrol Dial Transplant, 15 (8), 2000, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10910443 S. 1189–93

    Article  Google Scholar 

  51. Fliser, D., Kielstein, J.T., A single-pass batch dialysis system: an ideal dialysis method for the patient in intensive care with acute renal failure. Curr Opin Crit Care, 10 (6), 2004, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15616390 S. 483–8

    Article  Google Scholar 

  52. Kielstein, J.T., Hafer, C., „Extended dialysis“ auf der Intensivstation. Der Nephrologe – Zeitschrift für Nephrologie und Hypertensiologie, 1 (2), 2006, S. 97–102

    Google Scholar 

  53. Kiley, J., Welch, H.F., Pender, J.C., Removal of blood ammonia by haemodialysis. Proc. Soc. Exp. Biol. Medical, 91, 1956, S. 489–90

    Google Scholar 

  54. Kramer, L., Indikationen und KOmplikationen der Plasmapherese im Rahmen der Intensivmedizin. Intensivmedizin + Notfallmedizin, 35 (5), 1998, S. 349–355

    Article  Google Scholar 

  55. Tan, H.K., Hart, G., Plasma filtration. Ann Acad Med Singapore, 34 (10), 2005, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16382247 S. 615–24

    Google Scholar 

  56. Clemmesen, J.O., Kondrup, J., Nielsen, L.B., et al., Effects of high-volume plasmapheresis on ammonia, urea, and amino acids in patients with acute liver failure. Am J Gastroenterol, 96 (4), 2001, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11316173 S. 1217–23

    Article  Google Scholar 

  57. Kondrup, J., Almdal, T., Vilstrup, H., et al., High volume plasma exchange in fulminant hepatic failure. Int J Artif Organs, 15 (11), 1992, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1490760 S. 669–76

    Google Scholar 

  58. Sadamori, H., Yagi, T., Inagaki, M., et al., High-flow-rate haemodiafiltration as a brain-support therapy proceeding to liver transplantation for hyperacute fulminant hepatic failure. Eur J Gastroenterol Hepatol, 14 (4), 2002, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11943960 S. 435–9

    Article  Google Scholar 

  59. Seige, M., Kreymann, B., Jeschke, B., Schweigart, U., Kopp, K., Classen, M.,, Long-term treatment of patients with acute exacuberation of chronic liver failure by albumin dialysis. Transplantation Proceedings, 31 (1–2), 1999, S. 1371–1375

    Article  Google Scholar 

  60. Kreymann, B., Seige, M., Schweigart, U., Kopp, K., Classen, M., Albumin dialysis: effective removal of copper in a patient with fulminant Wilson disease and successful bridging to liver transplantation: a new possibility for the elimination of protein-bound toxins. Journal of Hepatology, 31 (6), 1999, S. 1080–1085

    Article  Google Scholar 

  61. Stange, J., Mitzner, S., Ramlow, W., et al., A new procedure for the removal of protein bound drugs and toxins. Asaio J, 39 (3), 1993, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8268613 S. M621–5

    Article  Google Scholar 

  62. Stange, J., Ramlow, W., Mitzner, S., et al., Dialysis against a recycled albumin solution enables the removal of albumin-bound toxins. Artif Organs, 17 (9), 1993, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8240075 S. 809–13

    Article  Google Scholar 

  63. Evenepoel, P., Maes, B., Wilmer, A., et al., Detoxifying capacity and kinetics of the molecular adsorbent recycling system. Contribution of the different inbuilt filters. Blood Purif, 21 (3), 2003, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12784051 S. 244–52

    Article  Google Scholar 

  64. Falkenhagen, D., Strobl, W., Vogt, G., et al., Fractionated plasma separation and adsorption system: a novel system for blood purification to remove albumin bound substances. Artif Organs, 23 (1), 1999, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed& dopt=Citation&list_uids=9950184 S. 81–6

    Article  Google Scholar 

  65. Rifai, K., Ernst, T., Kretschmer, U., et al., Prometheus – a new extracorporeal system for the treatment of liver failure. J Hepatol, 39 (6), 2003, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14642616 S. 984–90

    Article  Google Scholar 

  66. Krisper, P., Haditsch, B., Stauber, R., et al., In vivo quantification of liver dialysis: comparison of albumin dialysis and fractionated plasma separation. J Hepatol, 43 (3), 2005, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list _uids=16023249 S. 451–7

    Article  Google Scholar 

  67. Iwata, H., Ueda, Y., Pharmacokinetic considerations in development of a bioartificial liver. Clin Pharmacokinet, 43 (4), 2004, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15005636 S. 211–25

    Article  Google Scholar 

  68. Rozga, J., Podesta, L., LePage, E., et al., A bioartificial liver to treat severe acute liver failure. Ann Surg, 219 (5), 1994, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8185403 S. 538–44; discussion 544–6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schreiber, C., Al-Chalabi, A., Tanase, O., Kreymann, B. (2009). Grundlagen der Nieren- und Leberdialyse. In: Wintermantel, E., Ha, SW. (eds) Medizintechnik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93936-8_69

Download citation

Publish with us

Policies and ethics