Skip to main content

Auszug

Die Organtransplantation stellt eine verbreitete Therapie dar, um bei krankheits- oder unfallbedingter Schädigung eines Organs die Gesamtheit seiner Funktionen wieder herzustellen, indem es durch ein Spenderorgan ersetzt wird. Organtransplantationen werden für die Leber, die Niere, die Lunge, das Herz oder bei schweren grossflächigen Verbrennungen der Haut vorgenommen. Der grosse appa rative, personelle und logistische Aufwand und die Risiken der Transplantations chirurgie (Abstossungsreaktionen) sowie die mangelnde Verfügbarkeit von immunologisch kompatiblen Spenderorganen führen jedoch dazu, dass der Bedarf an Organtransplantaten nur zu einem sehr geringen Teil gedeckt werden kann. Sind Spenderorgane nicht verfügbar, können in einzelnen Fällen lebenswichtige Teil funktionen, wie beispielsweise die Filtrationsfunktion der Niere durch die Blutrei nigung mittels Dialyse ersetzt oder, bei mangelnder Funktion der Bauchspeicheldrüse (Diabetes), durch die Verabreichung von Insulin ein normaler Zustand des Gesamtorganismus auch über Jahre hinweg erhalten werden. Bei der notwendigen lebenslangen Anwendung apparativer oder medikamentöser Therapie können für den Patienten jedoch häufig schwerwiegende, möglicherweise lebens verkürzende Nebenwirkungen entstehen. Daher werden in der Forschung Alterna tiven gesucht, um die Funktionen des ausgefallenen Organs durch die Implantation von Zellen oder in vitro gezüchteten Geweben möglichst umfassend wieder herzu stellen. Dies erfordert biologisch aktive Implantate, welche die für den Stoff wechsel des Organs wichtigen Zellen enthalten und einen organtypischen Stoffwechsel entfalten.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

16.3 Literatur

  1. Langer R., Vacanti J.P., Tissue engineering, Science, 260, 1993, p. 920–926.

    Article  CAS  Google Scholar 

  2. Hubbell J.A., Langer R., Tissue engineering, Chemical & Engineering News, March 13, 1995, 1995, p. 42–53.

    Google Scholar 

  3. Skalak R., Fox C.F., Tissue Engineering, Alan R. Liss, Inc., New York, 1988.

    Google Scholar 

  4. Yannas I.V., Biologically active analogues of the extracellular matrix: Artificial skin and nerves, Angew. Chem. Int. Ed. Engl., 29, 1990, p. 20–35.

    Article  Google Scholar 

  5. Bell E., Rosenberg M., Kemp P., Gray R., Green G.D., Muthukumaran N., Nolte C., Recipes for reconstituting skin, Journal of biomechanical engineering, 113, 1991, p. 113–119.

    CAS  Google Scholar 

  6. Wintermantel E., Cima L., Schloo B., Langer R., Angiopolarity: Directional angiogenesis in resorbable liver cell transplantation devices, ESAO-Congress, Wien, 1991.

    Google Scholar 

  7. Cima L.G., Vacanti J.P., Vacanti C., Ingber D., Mooney D., Langer R., Tissue engineering by cell transplantation using degradable polymer substrates., Journal of biomechanical engineering, 113, 1991, p. 143–151.

    CAS  Google Scholar 

  8. Yarmush M.L., Toner M., Dunn J.C.Y., Rotem A., Hubel A., Tomkins R.G., Hepatic tissue engineering: Development of critical technologies., Ann. N.Y. Acad. Sci., 665, 1992, p. 472–485.

    Article  Google Scholar 

  9. Colton C.K., Avgoustiniatis E.S., Bioengineering in development of the hybrid artificial pancreas., Journal of biomechanical engineering, 113, 1991, p. 151–170.

    Google Scholar 

  10. Leuschner J., Rimpler M., Zellkulturen in der Toxikologie, In-vitro Systeme, 8, 1992, p. 1–2.

    Google Scholar 

  11. Green H., Kehinde O., Thomas J., Growth of cultured human epidermal cells into multiple epithelia suitable for grafting, Proc. Natl. Acad. Sci. USA., 76, 1979, p. 5665.

    Article  CAS  Google Scholar 

  12. Damien C.J., Parsons J.R., Benedict J.J., Weisman D.S., Investigation of a hydroxyapaptite and calcium sulfate composite supplemented with an osteoinductive factor, J. Biomed. Mater. res., 246, 1990, p. 639.

    Article  Google Scholar 

  13. Ito K., Fujisato T., Ikada Y., Implantation of cell-seeded biodegradable polymers for tissue reconstruction, in Tissue-inducing biomaterials, 252, Cima L.G., Ron E.S. (eds.), Materials Research Society, Pittsburgh, 1992, p. 359.

    Google Scholar 

  14. Wintermantel E., Cima L., Schloo B., Langer R., Angiopolarity of cell carriers. Directional angiogenesis in resorbable liver cell transplantation devices, in Angiogenesis: Principles-Science-Technology-Medine, Steiner R., Weisz B., Langer R. (eds.), Birkhäuser Verlag, Basel, 1992, p. 331–334.

    Google Scholar 

  15. Bissell M., Barcellos-Hoff M., The Influence of extracellular matrix on gene expression: Is structure the message?, J. Cell Sci. suppl., 8, 1987, p. 327 ff.

    Google Scholar 

  16. Benya P.D., Brown P.D., Modulation of chondrocyte phenotype in vitro, in Articular Cartilage Biochemistry, Kuettne K.E., R. Schleyerbach, Hascall V.C. (eds.), Raven Press, New York, 1986, p. 219–233.

    Google Scholar 

  17. Massia S.P., Hubbell J.A., Human endothelial cell interactions with surface-coupled adhesion peptides on a non-adhesive glass substrate and two polymeric biomaterials., J. Biomed. Mater. Res., 27, 1991, p. 183.

    Google Scholar 

  18. Ricci J.L., Alexander H., Howard C., The influence of surface microgeometry on fibroblast colonisation of synthetic surfaces, in Tissue-inducing biomaterials, 252, Cima L.G., Ron E.S. (eds.), Materials Research Society, Pittsburgh, 1992, p. 221–227.

    Google Scholar 

  19. Salthouse T.N., Matlage B.F., Some cellular effects related to implant shape and surface., in Biomaterials in reconstructive surgery, Rubin L.R. (ed.), C.V. Mosby Co., St. Louis, 1983, p. 40–45.

    Google Scholar 

  20. Nerem R., Sambanis A., Tissue engineering: from biology to biological substitutes, Tissue Engineering, 1, 1995, p. 3–13.

    Article  Google Scholar 

  21. Wintermantel E., Mayer J., Blum J., Eckert K.-L., Lüscher P., Mathey M., Tissue engineering scaffolds using superstructures, Biomaterials, 17, 1995, p. 83–92.

    Article  Google Scholar 

  22. Ashman A., Moss M.L., Implantation of porous polymethylmethrylacrylate resin for tooth and bone replacement., J. Prosthet. Dentistry, 37, 1977, p. 657–665.

    Article  CAS  Google Scholar 

  23. Hollinger J.O., Battistone G.C., Biodegradable bone repair materials. Synthetic polymers and ceramics, Clinical orthopaedics and related research, 207, 1986, p. 290–305.

    CAS  Google Scholar 

  24. Wang N., Butler J.P., Ingber D.E., Mechanotransduction across the cell surface and through the cytoskeleton., Science, 260, 1993, p. 1124–1127.

    Article  CAS  Google Scholar 

  25. Freed L.E., Vunjak-Novakovic G., Biron R.J., Eagles D.B., Lesnoy D.C., Barlow S.K., Langer R., Biodegradable polymer scaffolds for tissue engineering, Biotechnology, 12, 1994, p. 689–693.

    Article  CAS  Google Scholar 

  26. Freed L.E., Vunjak-Novakovic G., Tissue engineering of cartilage, in The Biomedical Engineering Handbook., Bronzino J.D. (ed.), CRC Press, Boca Raton, 1995, p. 1778–1796.

    Google Scholar 

  27. Wintermantel E., Mayer J., Anisotropic biomaterials: strategies and developments for bone implants, in Encyclopedic Handbook of Biomaterials and Bioengineering, B1, Wise D.L., Trantolo D.L., Altobelli D.E., Yaszemski M.J., Gresser J.G., Schwartz E.R. (eds.), 1st Edition, M. Dekker Inc, New York, 1995, p. 3–42.

    Google Scholar 

  28. Peppas N.A., Langer N.A., New challenges in biomaterials, Science, 263, 1994, p. 1715–1720.

    Article  CAS  Google Scholar 

  29. Freshney R.I., Three-dimensional culture systems, in Culture of animal cells, Freshney R.I. (ed.), Alan R. Liss Inc., New York, 1987, p. 297–307.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Mayer, J., Blum, J., Wintermantel, E. (2008). Grundlagen des Tissue Engineering. In: Medizintechnik Life Science Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74925-7_16

Download citation

Publish with us

Policies and ethics