Skip to main content

Apertureless Near-Field Probes

  • Chapter
Nano-Optics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 84))

Abstract

Apertureless probes made of metal, dielectrics, and semiconductors were investigated for use in near-field scanning optical microscopy (NSOM) [1-5]. In the configuration, the electric field localized near the tip of the sample is scattered by the fine structure of the sample or the tip and is detected with external collection optics. From the viewpoint of electromagnetism, the intensity of the scattered field detected in the far-field changes on a nano-metric scale as the boundary conditions of the electromagnetic field vary on a nanometric-scale while scanning the tip or sample of a fine structure with nanometric resolution. Apertureless probes have the following advantages compared to probes with small apertures:

  1. 1

    Since a probe does not have an aperture or opaque coating surrounding the aperture but just the scattering point at the apex, the resolution of an apertureless-probe NSOM can be much higher and can reach a few nanometers.

  2. 2

    Since the metal-coated dielectric waveguide is not used for sending (or receiving) photons to (or from) the probe apex, large optical throughput can be gained without any loss in waveguide propagation near the apex where the diameter of the dielectric is much shorter than the wavelength.

  3. 3

    By using metal as a probe material, field enhancement is anticipated with the local mode of the surface plasmon-polariton at the apex of the probe [6].

  4. 4

    The spectral response of near-field detection with a metallic tip ranges from ultraviolet to infrared because of the use of external optics (e.g., a Cassegrain objective mirror or a lens using an appropriate material), whereas the spectral response of an apertured probe is limited by the component material of the waveguide. The scattering efficiency of a metal is higher in the infrared region than in the visible, then the use of a metallic probe tip can be beneficial in infrared microspectroscopy [5,7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. M. Vigoureux, C. Girard. and D. C.urjon: General principles of scanning tunneling optical microscopy. Opt. Lett., 14, 1039 (1989)

    Google Scholar 

  2. N. F. van Hulst, M. H. P. Moers, O. F. J. Noordman, R. G. Tack, F. B. Segerink, B. and Böiger: Appl. Phys. Lett. 62, 461 (1993)

    Google Scholar 

  3. Y. Inouye and S. Kawata: Optics Lett. 19, 159 (1994)

    Article  ADS  Google Scholar 

  4. R. Zenhausern, M. P. O’Boyle. and H. K. Wickramasinghe: Appl. Phys. Lett. 65. 1623 (1994)

    Google Scholar 

  5. A. Lahrech, P. Bachelot, P. Gleyzes, and A. C. Boccara: Opt. Lett. 21, 1315 (1996)

    Article  ADS  Google Scholar 

  6. J. Wessel: J. Opt. Soc. Am. B 2, 1538 (1985)

    Article  ADS  Google Scholar 

  7. B. Knoll and F. Keilmann: Nature 399, 134 (1999)

    Article  ADS  Google Scholar 

  8. G. Mie: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. d. Phys. 25, 377 (1908)

    Article  ADS  MATH  Google Scholar 

  9. M. Kerker: The Scattering of Light and other Electromagnetic Radiation ( Academic Press, New York 1969 ) pp. 84–88

    Google Scholar 

  10. J. A. Stratton: Electromagnetic Theory ( McGraw-Hill, New York 1941 )

    MATH  Google Scholar 

  11. C. F. Bohren and D. R. Huffman: Absorption and Scattering of Light by Small Particles ( John Wiley and Sons, New York 1983 )

    Google Scholar 

  12. H. Fröhlich: Theory of Dielectrics ( Oxford University Press, London 1949 )

    Google Scholar 

  13. B. J. Messinger, K. U. Rayon, R. K. Chang, and P. W. Barber: Phys. Rev. B 24, 649 (1981)

    Article  ADS  Google Scholar 

  14. P. K. Aravind and H. Metiu: Surf. Sci. 124, 506 (1983)

    Article  ADS  Google Scholar 

  15. M. M. Wind, J. Vlieger, and D. Bedeaux: Physica 141A, 33 (1987)

    Article  Google Scholar 

  16. T. Okamoto and I. Yamaguchi: Opt. Rev. 6, 211 (1999)

    Article  Google Scholar 

  17. T. Okamoto, I. Yamaguchi, and T. Kobayashi: Opt. Lett. 25, 372 (2000)

    Article  ADS  Google Scholar 

  18. A. Doron, E. Katz, and I. Willner: 11, 1313 (1995)

    Google Scholar 

  19. R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan: Science 267, 1629 (1995)

    Article  ADS  Google Scholar 

  20. K. C. Grabar, P. C. Smith, M. D. Musick, J. A. Davis, D. G. Walter, M. A. Jackson, A. P. Guthrie, and M. J. Natan: J. Am. Chem. Soc. 118, 1148 (1996)

    Article  Google Scholar 

  21. G. Schmid, S. Peschel, and T. Sawitowski: Z. anorg. allg. Chem. 623, 719 (1997)

    Article  Google Scholar 

  22. T. Sato, D. G. Hasko. and H. Ahmed: J. Vac. Sci. Technol. B 15, 45 (1997)

    Article  Google Scholar 

  23. S. S. Yee (ed.): special issue on Surface Plasmon Resonance (SPR) Optical Sensors, Current Technology and Applications, Sensors and Actuators B 54(12) (1999)

    Google Scholar 

  24. T. Okamoto and I. Yamaguchi: Jpn. J. Appl. Phys. 36, L166 (1997)

    Article  ADS  Google Scholar 

  25. W. A. Ducker, T. J. Senden, and R. M. Pashley: Nature 353, 239 (1991)

    Article  ADS  Google Scholar 

  26. W. A. Ducker, T. J. Senden, and R. M. Pashley: Langmuir 8, 1831 (1992)

    Article  Google Scholar 

  27. S. Kawata and Y. Inouye: Ultramicroscopy 57, 313 (1995)

    Article  Google Scholar 

  28. F. Zenhausen, Y. Martin, and H. K. Wickramasinghe: Science

    Google Scholar 

  29. F. Möllers, H. J. Tolle, and R. Memming: J. Electrochem. Soc. 121, 1160 (1974)

    Article  Google Scholar 

  30. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu: Opt. Lett. 11. 288 (1986)

    Article  ADS  Google Scholar 

  31. A. Ashkin, J. Dziedzic, and T. Yamane: Nature, 330, 769 (1987)

    Article  ADS  Google Scholar 

  32. K. Svoboda, S. M. Block: Opt. Lett. 19, 930 (1994)

    Article  ADS  Google Scholar 

  33. T. Sugiura, T. Okada, Y. Inouye, O. Nakamura, and S. Kawata: Opt. Lett.

    Google Scholar 

  34. T. Sugiura and T. Okada: Proc. SPIE, 3260, 4 (1998)

    Article  ADS  Google Scholar 

  35. T. Sugiura. S. Kawata, and T. Okada: J. Microsc. 194, 291 (1999)

    Article  Google Scholar 

  36. S. Kawata. Y. Inouye, and T. Sugiura: Jpn. J. Appl. Phys. 33, L1725 (1994)

    Article  Google Scholar 

  37. K. Sasaki, Z. Shi, R. Kopelman. and H. Masuhara: Chem. Lett. 1996. 141 (1996)

    Article  Google Scholar 

  38. H. Furukawa and S. Kawata: Opt. Comm. 148. 221 (1998)

    Article  ADS  Google Scholar 

  39. K. S. Yee: IEEE Trans. Antennas Propagat. AP-14, 302 (1966)

    Google Scholar 

  40. J. B. Judkins and R. W. Ziolkowski: J. Opt. Soc. Am. A 12, 1974 (1995)

    Article  ADS  Google Scholar 

  41. D. A. Christensen: Ultramicroscopy 57, 189 (1995)

    Article  Google Scholar 

  42. H. Furukawa and S. Kawata: Opt. Comm. 132, 170 (1996)

    Article  ADS  Google Scholar 

  43. L. Novotny, D. W. Pohl, and P. Regli: J. Opt. Soc. Am. A 11, 1768 (1994)

    Article  ADS  Google Scholar 

  44. H. Raether: Surface Plasmons on Smooth and Rough Surfaces and on Gratings ( Springer, Berlin Heidelberg New York 1988 )

    Google Scholar 

  45. J. Meixner: IEEE Trans. Antennas Propagation AP-20, 442 (1972)

    Google Scholar 

  46. V. Deckert, D. Zeisel, R. Zenobi, and T. Vo-Dinh: Anal. Chem. 70. 2646 (1998)

    Article  Google Scholar 

  47. N. Hayazawa, Y. Inouye, Z. Sekkat, and S. Kawata: Opt. Commun. 183. 333 (2000)

    Article  ADS  Google Scholar 

  48. N. Hayazawa, Y. Inouye, and S. Kawata: J. Microsc. 197, 472 (1999)

    Article  Google Scholar 

  49. R. K. Chang and T. E. Furtak, eds.: Surface Enhanced Raman Scattering ( Plenum, New York 1982 )

    Google Scholar 

  50. N. Hayazawa, Y. Inouye, Z. Sekkat, and S. Kawata: Chem. Phys. Lett. 335, 369 (2001)

    Article  ADS  Google Scholar 

  51. A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann: J. Phys. Condens. Matter. 4, 1143 (1992)

    Article  ADS  Google Scholar 

  52. P. Kambhampati and A. Campion: Surf. Sci. 427–428, 115 (1999)

    Article  Google Scholar 

  53. U. C. Fischer: J. Vac. Sci. Technol. B3, 386 (1985)

    Article  Google Scholar 

  54. U. C. Fischer and D. W. Pohl: Phys. Rev. Lett. 62, 458 (1989)

    Article  ADS  Google Scholar 

  55. U. Durig, D. W. Pohl, and F. Rohner: J. Appl. Phys. 59, 3318 (1986)

    Article  ADS  Google Scholar 

  56. S. Jiang, K. Nakagawa, and M. Ohtsu: Jpn. J. Appl. Phys. 33, L55 (1994)

    Article  ADS  Google Scholar 

  57. A. Harootunian et al.: Appl. Phys. Lett. 49, 674 (1986)

    Article  ADS  Google Scholar 

  58. D. W. Pohl, U. C. Fischer, and U. T. Durig: Proc. SPIE 897, 84 (1988)

    Google Scholar 

  59. R. C. Reddick et al.: Phys. Rev. B39, 767 (1989)

    Article  ADS  Google Scholar 

  60. D. Courjon, K. Sarayeddine, and M. Spajer: Opt. Commun. 71, 23 (1989)

    Article  ADS  Google Scholar 

  61. S. Jiang et al.: Jpn. J. Appl. Phys. 30, 2107 (1991)

    Article  ADS  Google Scholar 

  62. F. de Fornel et al.: Ultramicroscopy 42–44, 422 (1992)

    Article  Google Scholar 

  63. G. Chabrier et al.: Opt. Commun. 107, 347 (1994)

    Article  ADS  Google Scholar 

  64. T. Kataoka et al.: Ultramicroscopy 63, 219–225 (1996)

    Article  Google Scholar 

  65. Y. Oshikane et al.: Techn. Dig. 5th Int. Conf. on Near Field Optics, Shirahama, 1998, pp. 12–13

    Google Scholar 

  66. H. Nakagawa et al.: ibid,179–180

    Google Scholar 

  67. R. K. Chang et al.: Optical Processes in Microcavities, Chap. 8 ( World Scientific, New Jersey 1996 )

    Google Scholar 

  68. P. B. Wong et al.: IEEE Trans. Antennas Propagation 44 (4), 504 (1966)

    Article  ADS  Google Scholar 

  69. G. Mur: IEEE Trans. Electromagn. Compat. EMC-23(11), 377 (1981)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kawata, S., Inouye, Y., Kataoka, T., Okamoto, T. (2002). Apertureless Near-Field Probes. In: Kawata, S., Ohtsu, M., Irie, M. (eds) Nano-Optics. Springer Series in Optical Sciences, vol 84. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45273-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45273-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07527-8

  • Online ISBN: 978-3-540-45273-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics