Skip to main content

Learning Linear Classifiers Sensitive to Example Dependent and Noisy Costs

  • Conference paper
Advances in Intelligent Data Analysis V (IDA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2810))

Included in the following conference series:

Abstract

Learning algorithms from the fields of artificial neural networks and machine learning, typically, do not take any costs into account or allow only costs depending on the classes of the examples that are used for learning. As an extension of class dependent costs, we consider costs that are example, i.e. feature and class dependent. We derive a cost-sensitive perceptron learning rule for non-separable classes, that can be extended to multi-modal classes (DIPOL) and present a natural cost-sensitive extension of the support vector machine (SVM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Clarke, F.H.: Optimization and Nonsmooth Analysis. Canadian Math. Soc. Series of Monographs and Advanced Texts. John Wiley & Sons, Chichester (1983)

    Google Scholar 

  2. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines (and Other Kernel-Based Learning Methods). Cambridge University Press, Cambridge (2000)

    Google Scholar 

  3. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. John Wiley & Sons, New York (1973)

    MATH  Google Scholar 

  4. Elkan, C.: The foundations of Cost-Sensitive learning. In: Nebel, B. (ed.) Proceedings of the seventeenth International Conference on Artificial Intelligence (IJCAI 2001), August 4-10, pp. 973–978. Morgan Kaufmann Publishers, Inc., San Francisco (2001)

    Google Scholar 

  5. Geibel, P., Wysotzki, F.: Using costs varying from object to object to construct linear and piecewise linear classifiers. Technical Report 2002-5, TU Berlin, Fak. IV (2002), http://ki.cs.tu-berlin.de/~geibel/publications.html

  6. Kukar, M., Kononenko, I.: Cost-sensitive learning with neural networks. In: Prade, H. (ed.) Proceedings of the 13th European Conference on Artificial Intelligence (ECAI 1998), pp. 445–449. John Wiley & Sons, Chichester (1998)

    Google Scholar 

  7. Lenarcik, A., Piasta, Z.: Rough classifiers sensitive to costs varying from object to object. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 222–230. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  8. Lin, Y., Lee, Y., Wahba, G.: Support vector machines for classification in nonstandard situations. Machine Learning 46(1-3), 191–202 (2002)

    Article  MATH  Google Scholar 

  9. Margineantu, D.D., Dietterich, T.G.: Bootstrap methods for the costsensitive evaluation of classifiers. In: Proc. 17th International Conf. on Machine Learning, pp. 583–590. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  10. Michie, D., Spiegelhalter, D.H., Taylor, C.C.: Machine Learning, Neural and Statistical Classification. Series in Artificial Intelligence. Ellis Horwood (1994)

    Google Scholar 

  11. Nedic, A., Bertsekas, D.P.: Incremental subgradient methods for nondifferentiable optimization. SIAM Journal on Optimization, 109–138 (2001)

    Google Scholar 

  12. Schulmeister, B., Wysotzki, F.: Dipol - a hybrid piecewise linear classifier. In: Nakeiazadeh, R., Taylor, C.C. (eds.) Machine Learning and Statistics: The Interface, pp. 133–151. Wiley, Chichester (1997)

    Google Scholar 

  13. Unger, S., Wysotzki, F.: Lernfähige Klassifizierungssysteme (Classifier Systems that are able to Learn). Akademie-Verlag, Berlin (1981)

    Google Scholar 

  14. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    MATH  Google Scholar 

  15. Wysotzki, F., Müller, W., Schulmeister, B.: Automatic construction of decision trees and neural nets for classification using statistical considerations. In: DellaRiccia, G., Lenz, H.-J., Kruse, R. (eds.) WADS 1989. CISM Courses and Lectures, vol. 382. Springer, Heidelberg (1997)

    Google Scholar 

  16. Yang, J., Parekh, R., Honavar, V.: Comparison of performance of variants of single-layer perceptron algorithms on non-separable data. Neural, Parallel and Scientific Computation 8, 415–438 (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Geibel, P., Brefeld, U., Wysotzki, F. (2003). Learning Linear Classifiers Sensitive to Example Dependent and Noisy Costs. In: R. Berthold, M., Lenz, HJ., Bradley, E., Kruse, R., Borgelt, C. (eds) Advances in Intelligent Data Analysis V. IDA 2003. Lecture Notes in Computer Science, vol 2810. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45231-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45231-7_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40813-0

  • Online ISBN: 978-3-540-45231-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics