Skip to main content

Summarizing Time Series: Learning Patterns in ‘Volatile’ Series

  • Conference paper
Intelligent Data Engineering and Automated Learning – IDEAL 2004 (IDEAL 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3177))

Abstract

Most financial time series processes are nonstationary and their frequency characteristics are time-dependant. In this paper we present a time series summarization and prediction framework to analyse nonstationary, volatile and high-frequency time series data. Multiscale wavelet analysis is used to separate out the trend, cyclical fluctuations and autocorrelational effects. The framework can generate verbal signals to describe each effect. The summary output is used to reason about the future behaviour of the time series and to give a prediction. Experiments on the intra-day European currency spot exchange rates are described. The results are compared with a neural network prediction framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Psaila, G., Wimmers, E.L., Zait, M.: Querying Shapes of Histories. In: Proceedings of the International Conference on Very Large Data Bases (VLDB), pp. 502–514 (1995)

    Google Scholar 

  2. Box, G.E.P., Jenkins, G.M.: Time Series Analysis: Forecasting and Control. In: Time Series and Digital Processing, 2nd edn., Holden Day, San Francisco (1976)

    Google Scholar 

  3. Boyd, S.: TREND: A System for Generating Intelligent Description of Time-Series Data. In: Proceedings of the IEEE ICIPS (1998)

    Google Scholar 

  4. Brock, W.A.: Whither Nonlinear? Journal of Economic Dynamics and Control 24, 663–678 (2000)

    Article  Google Scholar 

  5. Campolucci, P., Piazza, F.: On-Line Learning Algorithms for Locally Recurrent Neural Networks. IEEE Transactions on Neural Networks 10(2), 253–271 (1999)

    Article  Google Scholar 

  6. Chatfield, C.: The Analysis of Time Series: An Introduction, 5th edn. Chapman and Hall/CRC, Boca Raton (1996)

    MATH  Google Scholar 

  7. Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

    MATH  Google Scholar 

  8. Gençay, R., Selçuk, F., Whitcher, B.: An Introduction to Wavelets and Other Filtering Methods in Finance and Economics. Academic Press, London (2002)

    MATH  Google Scholar 

  9. Gençay, R., Selcuk, F., Whitcher, B.: Differentiating Intraday Seasonalities Through Wavelet Multi-scaling. Physica A 289, 543–556 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kaboudan, M.A.: Genetic Programming Prediction of Stock Prices. Computational Economics 16, 207–236 (2000)

    Article  MATH  Google Scholar 

  11. Keogh, E., Pazzani, M.: An Indexing Scheme for Fast Similarity Search in Large Time Series Databases. In: Proceedings of 11th Int’l Conference on Scientific and Statistical Database Management (1999)

    Google Scholar 

  12. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Locally Adaptive Dimensionality Reduction for Indexing Large Time Series Databases. SIGMOD Record (ACM Special Interest Group on Management of Data), 151–162 (2001)

    Google Scholar 

  13. Mallat, S.: A Theory for Multiresolution Signal Decomposition: The Wavelet Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11, 674–693 (1989)

    Article  MATH  Google Scholar 

  14. Mallat, S., Zhong, S.: Characterization of Signals from Multiscale Edges. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(7), 710–732 (1992)

    Article  Google Scholar 

  15. Meyer, Y.: Wavelets: Algorithms and Applications. In: Society for Industrial and Applied Mathematics, Philadelphia (1993)

    Google Scholar 

  16. Qian, S., Chen, D.: Understanding the Nature of Signals whose Power Spectra Change with Time. IEEE Signal Processing Magazine (1999)

    Google Scholar 

  17. Ramsey, J.B., Zhang, Z.: The Analysis of Foreign Exchange Data Using Waveform Dictionaries. Journal of Empirical Finance 4, 341–372 (1997)

    Article  Google Scholar 

  18. Renaud, O., Starck, J.L., Murtagh, F.: Prediction Based on a Multiscale Decomposition. International Journal of Wavelets, Multiresolution and Information Processing 1(2), 217–232 (2003)

    Article  MATH  Google Scholar 

  19. Sripada, S.G., Reiter, E., Hunter, J., Yu, J.: Generating English Summaries of Time Series Data Using the Gricean Maxims. In: SIGKDD, USA (2003)

    Google Scholar 

  20. Walid, G.A., Mohamed, G.E., Ahmed, K.E.: Incremental, Online, and Merge Mining of Partial Periodic Patterns in Time Series Databases. IEEE Transactions on Knowledge and Data Engineering 16(3), 332–342 (2004)

    Google Scholar 

  21. Wan, E.: Time Series Prediction Using a Neural Network with Embedded Tapped Delay- Lines in Predicting the Future and Understanding the Past. In: Weigend, A., Gershenfeld, N. (eds.) SFI Studies in the Science of Complexity, Addison-Wesley, Reading (1993)

    Google Scholar 

  22. Whitcher, B., Percival, D.B., Guttorp, P.: Multiscale Detection and Location of Multiple Variance Changes in the Presence of Long Memory. Journal of Statistical Computation and Simulation 68, 65–88 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Zemke, S.: Bagging Imperfect Predictors. In: Proceedings of Artificial Neural Networks in Engineering, pp. 1067–1072. St. Louis, Missouri (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ahmad, S., Taskaya-Temizel, T., Ahmad, K. (2004). Summarizing Time Series: Learning Patterns in ‘Volatile’ Series. In: Yang, Z.R., Yin, H., Everson, R.M. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2004. IDEAL 2004. Lecture Notes in Computer Science, vol 3177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28651-6_77

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28651-6_77

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22881-3

  • Online ISBN: 978-3-540-28651-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics