Skip to main content

Ablation

  • Chapter
Two-Phase Flows

Part of the book series: Vieweg Tracts in Pure and Applied Physics ((VTPAP,volume 3))

  • 58 Accesses

Abstract

In the last five chapters, we considered mainly the flow of a mixture of two phases of matter. In the next two chapters, we will consider some second groups in which the interaction between two phases of matter is through their interface. One of the most interesting liquid-gas problems is ablation which is a process of absorbing heat energy by removing surface material, either by melting (possibly accompanied by evaporation of the molten material) or by sublimation. Ablation has been extensively investigated during the last ten years because it is one of the important methods to protect the surface of a space vehicle from over-heating. The methods of protection of re-entry vehicles from extreme thermo-chemical environment may be divided into four categories:

  1. (i)

    Radiator

  2. (ii)

    transpiration cooling

  3. (iii)

    heat sink and

  4. (iv)

    ablation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, Mac C, Powers, W. E. and Georgiev, S.: An experimental and theoretical study of quartz ablation at the stagnation point. Jour. Aero. Sci. Vol. 27, No. 7, pp. 535–543, 1960.

    Google Scholar 

  2. Bethe, H. A. and Adams, Mac C: A theory of the ablation of glassy materials. Jour. Aero. Sci. Vol. 26, No. 6, pp. 321–328, 1959.

    Google Scholar 

  3. Chapman, D. R., Larson, H. K. and Anderson, L. A.: Aerodynamic evidence pertaining to the entry of tektites into the earth’s atmosphere. NASA TR R-134, 1962.

    Google Scholar 

  4. Chapman, D. R. and Larson, H. K.: On the lunar origin of tektites. Jour. Geophys. Res., Vol. 68, No. 14, pp. 4305–4358, July 15, 1963. Also NASA TN-D-1556, Feb. 1963.

    Article  Google Scholar 

  5. Cheng, S. I.: On the mechanism of atmospheric ablation. Proc. IXth Intern. Astro. Cong. Amsterdam, pp. 1–12, Aug. 1958.

    Google Scholar 

  6. Diaconis, N. S., Fanucci, J. B. and Sutton, G. W.: The heat protection potential of several ablation materials for satellite and ballistic re-entry into earth’s atmosphere. Tech. Inf. ser. R59SD423, Aerosci. Lab. Missile and Space Vehicle Dept. General Electric Co. 1959.

    Google Scholar 

  7. Greenberg, R. A., Kemp, N. H. and Wray, K. L.: Structure of the laminar ablating air-teflon boundary layer. Res. Report 301, AVCO Everett Res. Lab. Nov. 1968.

    Google Scholar 

  8. Krishnan, S. and Glicksman, L. R.: A two-dimensional analysis of a heated free jet at low Reynolds numbers. ASEME paper No. 70-WA/FE-3,1970.

    Google Scholar 

  9. Landau, H. G.: Heat conduction in a melting solid. Quarterly of Appl. Math. Vol. 8, No. 1, pp. 81–94,1951.

    Google Scholar 

  10. Lees, L.: Ablation in hypersonic flows. Proc. 7th Anglo-American Aero. Conf. IAS, New York, pp. 344–362, 1959.

    Google Scholar 

  11. Lees, L.: Similarity parameters for surface melting of a blunt nosed body in a high velocity gas stream. ARS Jour. pp. 345–354, May 1959.

    Google Scholar 

  12. Middlehurst, B. M. and Kuiper, G. P.: The moon, meteorites and comets. Vol. IV of The Solar System, The University of Chicago Press, 1963.

    Google Scholar 

  13. O’Keefe, J. A.: Tektites. The University of Chicago Press, 1963.

    Google Scholar 

  14. Ostrach, S. and McConnel, D. G.: Melting ablation about decelerating spherical bodies. AIAA Jour. Vol. 3, No. 10, pp. 1883–1889,1965.

    Article  Google Scholar 

  15. Pinchak, A. C.: Correlation of some laboratory experiments in two-phase flow with phenomena at air-sea interface. Report ARL 66–0159 Office of Aerospace Res. USAF, August 1966.

    Google Scholar 

  16. Riddel, F. R. and Fay, A. J.: Theory of stagnation point heat transfer in dissociated air. Jour. Aero. Sci. Vol. 25, No. 2, p. 73, 1958.

    Google Scholar 

  17. Roberts, L.: On the melting of a semi-infinite body of ice placed in a hot stream of air. Jour. Fluid Mech. Vol. 4, pt. 5, pp. 505–528, 1958.

    Article  Google Scholar 

  18. Scala, S. M. and Sutton, G. W.: The two-phase hypersonic laminar boundary layer — A study of surface melting. Proc. 1958 Heat Transfer & Fluid Mech. Inst. Stanford University Press, pp. 231–240, 1958.

    Google Scholar 

  19. Turcotte, D. L.: The melting of ice in a hot stream of air. Jour. Fluid Mech. Vol. 8, pt. 1, pp. 123–129, 1960.

    Article  Google Scholar 

  20. Ursell, F.: Wave generation by wind. Survey of Mechanics, Ed. by Batchelor and Davis, Cambridge Univ. Press, 1956.

    Google Scholar 

  21. von Karman, Th.: From Low Speed Aerodynamics to Astronautics. Pergamon Press, New York, 1963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

K. Oswatitsch

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Pai, SI. (1977). Ablation. In: Oswatitsch, K. (eds) Two-Phase Flows. Vieweg Tracts in Pure and Applied Physics, vol 3. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-86348-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-86348-5_8

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-528-08340-3

  • Online ISBN: 978-3-322-86348-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics