Skip to main content

Part of the book series: CE-Series ((CHROM,volume 3))

  • 486 Accesses

Abstract

The use of CE for the analysis of carbohydrates was first demonstrated for separations of standard mixtures of mono-and disaccharides in order to develop suitable CE separation systems and detection schemes for this class of compounds. Since the different carbohydrate separation and detection strategies have already been reviewed in Chapter 4, this section will focus on applications. There are three main areas in which mono- and disaccharide analysis is of importance: food analysis, compositional analysis of oligo- and polysaccharides and carbohydrate analysis in biological samples such as urine or blood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Klockow, A. Paulus, V. Figueiredo, R. Amado, and H.M. Widmer, “Determination of carbo hydrates in fmit juices by capillary electrophoresis and high-performance liquid chromatography”, J. Chromatogr. A, 680 1994 187–200.

    Article  Google Scholar 

  2. A.E. Vomdran, P.J. Oefner, H. Scherz, and G.K. Bonn, “Indirect UV detection of carbohydrates in capillary zone electrophoresis”, Chromatographia, 33 1992 163–168.

    Article  Google Scholar 

  3. Y.-H. Lee, and T.-I. Lin, “Determination of carbohydrates by high-performance capillary elec trophoresis with indirect absorbance detection”, J. Chromatogr. B, 681 1996 87–97.

    Article  Google Scholar 

  4. A.M. Fermier, and L.A. Colon, “Capillary electrophoresis with constant potential amperometric detection using a nickel microelectrode for detection of carbohydrates”, J. High Resol Chromatogr., 791996 613–616.

    Google Scholar 

  5. J. Ye, and R.P. Baldwin, “Determination of carbohydrates, sugar acids and alditols by capillary electrophoresis and electrochemical detection at a copper electrode”, J. Chromatogr. A, 687 1994 141–148.

    Article  Google Scholar 

  6. C.R. Noe, J. Freissmuth, D. Rothley, B. Lachmann, and P. Richter, “Kapillarelektrophoretische Analytik komplexer Kohlenhydratgemische”, Pharmazie, 51 1996 868–873.

    Google Scholar 

  7. C. Huber, E. Grill, P.J. Oefner, and O. Bobleter, “Capillary electrophoretic determination of the component monosaccharides in hemicelluloses”, Fresenius J. Anal Chem., 348 1994 825–831.

    Article  Google Scholar 

  8. C. Chiesa, P.J. Oefner, L.R. Zieske, and R.A. O’Neill, “Micellar electrokinetic chromatography of monosaccharides derivatized with l-phenyl-3-methyl-2-pyrazolin-5-one”, J. Cap. Elec., 2 1995 175–183.

    Google Scholar 

  9. J. Liu, O. Shirota, D. Wiesler, and M. Novotny, “Ultrasensitive fluorometric detection of carbo hydrates as derivatives in mixtures separated by capillary electrophoresis”, Proc. Natl Acad. Sci. USA, 88 1991 2302–2306.

    Article  Google Scholar 

  10. A. Guttman, “Analysis of monosaccharide composition by capillary electrophoresis”, J. Chro matogr. A, 763 1997 271–277.

    Article  Google Scholar 

  11. S. Honda, S. Iwase, A. Makino, and S. Fujiwara, “Simultaneous determination of reducing monosaccharides by capillary zone electrophoresis as the borate complexes of N-2-pyridylglycamines”, Anal Biochem., 176 1989 72–77.

    Article  Google Scholar 

  12. T.J. O’Shea, S.M. Lunte, and W.R. LaCourse, “Detection of carbohydrates by capillary electro phoresis with pulsed amperometric detection”, Anal Chem., 65 1993 948–951.

    Article  Google Scholar 

  13. R.E. Roberts, and D.C. Johnson, “Variation in PED Response at a gold microelectrode as a function of waveform parameters when applied to alditols and carbohydrates separated by capillary electrophoresis”, Electroanalysis, 7 1995 1015–1019.

    Article  Google Scholar 

  14. Z. Jin, R. Chen, and L.A. Colon, “Determination of glucose in submicroliter samples by CE-LIF using precolumn or on-column enzymatic reactions”, Anal Chem., 69 1997 1326–1331.

    Article  Google Scholar 

  15. A.M. Arentoft, S. Michaelsen, and H. Sorensen, “Determination of oligosaccharides by capillary zone electrophoresis”, J. Chromatogr A, 652 1993 517–524.

    Article  Google Scholar 

  16. T. Ogawa, T. Terabayashi, and Y. Kawanichi, “Analysis of oligo- and poly-N-acetylneuraminic acids and their lactones by capillary electrophoresis”, J. Chromatogr. A., 741 1996 295–298.

    Article  Google Scholar 

  17. W. Zhou, and R.P. Baldwin, “Capillary electrophoresis and electrochemical detection of underivatized oligo-and polysaccharides with surfactant controlled-electroosmotic flow”, Electrophoresis, 17 1996 319–324.

    Article  Google Scholar 

  18. W. Nashabeh, and Z. El Rassi, “Capillary zone electrophoresis of pyridylamino derivatives of maltooligosaccharides”, J. Chromatogr., 514 1990 57–64.

    Article  Google Scholar 

  19. S. Honda, S. Suzuki, A. Nose, K. Yamamoto, and K. Kakehi, “Capillary zone electrophoresis of reducing mono- and oligosaccharides as the borate complexes of their 3-methyl-l-phenyl-2-pyrazolin-5-one derivatives”, Carbohydr Res., 215 1991 193–198.

    Article  Google Scholar 

  20. C. Chiesa, and C. Horváth, “Capillary zone electrophoresis of malto-oligosaccharides derivatized with 8-aminonaphthalene-1,3,6-trisulfonic acid”, J. Chromatogr., 645 1993 337–352.

    Article  Google Scholar 

  21. A. Klockow, H.M. Widmer, R. Amado, and A. Paulus, “Capillary electrophoresis of ANTS labelled oligosaccharide ladders and complex carbohydrates”, Fresenius J. Anal Chem., 350 1994 415–425.

    Article  Google Scholar 

  22. M. Stefansson, and M.V. Novotny, “Separation of complex oligosaccharide mixtures by capillary electrophoresis in the open-tubular format”, Anal Chem., 66 1994 1134–1140.

    Article  Google Scholar 

  23. M. Stefansson, and M.V. Novotny, “Resolution of the branched forms of oligosaccharides by high-performance capillary electrophoresis”, Carbohydr. Res., 258 1994 1–9.

    Article  Google Scholar 

  24. C. Chiesa, and R.A. O’Neill, “Capillary zone electrophoresis of oligosaccharides derivatized with various aminonaphthalene sulfonic acids”, Electrophoresis, 15 1994 1132–1140.

    Article  Google Scholar 

  25. J. Plocek, and M.V. Novotny, “Capillary zone electrophoresis of oligosaccharides derivatized with N-(4-aminobenzoyl)-L-glutamic acid for ultraviolet absorbance detection”, J. Chromatogr. AJ 57 1997 215–223.

    Article  Google Scholar 

  26. J. Sudor, and M.V. Novotny, “End-label, free-solution capillary electrophoresis of highly charged oligosaccharides”, Anal. Chem., 67 1995 4205–4209.

    Article  Google Scholar 

  27. A. Guttman, S. Brunet, and N. Cooke, “Capillary electrophoresis of carbohydrates in the bio-pharmaceutical and food and beverage industries”, LC-GC, 14 1996 788–792.

    Google Scholar 

  28. W. Nashabeh, and Z. El Rassi, “Capillary zone electrophoresis of linear and branched oligosaccharides”, J. Chromatogr, 600 1992 279–287.

    Article  Google Scholar 

  29. A. Rydlund, and O. Dahlman, “Oligosaccharides obtained by enzymatic hydrolysis of birch kraft pulp xylan: Analysis by capillary zone electrophoresis and mass spectrometry”, Carbohydr Res., 300 1997 95–102.

    Article  Google Scholar 

  30. A. Rydlund, and O. Dahlman, “Rapid analysis of unsaturated acidic xylooligosaccharides from kraft pulps using CZE”, J. High Res. Chromatogr., 20 1997 72–76.

    Article  Google Scholar 

  31. A. Rydlund, and O. Dahlman, “Efficient capillary zone electrophoretic separation of wood-derived neutral and acidic mono- and disaccharides”, J. Chromatogr. A, 738 1996 129–140.

    Article  Google Scholar 

  32. A. Nardi, S. Fanali, and F. Foret, “Capillary zone electrophoretic separation of cyclodextrins with indirect UV photometric detection”, Electrophoresis, 11 1990 774–776.

    Article  Google Scholar 

  33. K. Lambertsen Larsen, F. Mathiesen, and W. Zimmermann, “Separation and analysis of cyclodextrins by capillary zone electrophoresis”, Carbohydr. Res., 298 1997 59–63.

    Article  Google Scholar 

  34. S.G. Penn, R.W. Chiù, and C.A. Monnig, “Separation and analysis of cyclodextrins by capillary electrophoresis with dynamic fluorescence labelling and detection”, J. Chromatogr. A, 680 1994 233–241.

    Article  Google Scholar 

  35. T.-I. Lin, and Y.-H. Lee, “Capillary electrophoretic analysis of cyclodextrins and determination of formation constants for inclusion complexes”, Electrophoresis, 17 1996 333–340.

    Article  Google Scholar 

  36. K.-B. Lee, Y.-S. Kim, and R.J. Linhardt, “Capillary zone electrophoresis for the quantitation of oligosaccharides formed through the action of chitinase”, Electrophoresis, 12 1991 636–640.

    Article  Google Scholar 

  37. Z. Zhang, M.L. Pierce, and A.J. Mort, “Detection and differentiation of pectic enzyme activity in vitro and in vivo by capillary electrophoresis of products from fluorescent labeled substrate”, Electrophoresis, 17 1996 372–378.

    Article  Google Scholar 

  38. A.J. Mort, and E.M.W. Chen, “Separation of 8-aminonaphthalene-1,3,6-trisulfonate (ANTS)-labeled oligomers containing galacturonic acid by capillary electrophoresis: Application to determining the substrate speciflty of endopolygalacturonases”. Electrophoresis, 17 1996 379–383.

    Article  Google Scholar 

  39. R. Zeleny, F. Altmann, and W. Praznik, “A capillary electrophoretic study on the specificity of P-galactosidases from Aspergillus oryzae, Escherichia coli, Streptococcus pneumoniae, and Canavalia ensiformis (Jack Bean)”, Anal. Biochem., 246 1997 96–101.

    Article  Google Scholar 

  40. X. Le, C. Seaman, Y. Zhang, J. Zhang, N.J. Dovichi, O. Hindsgaul, and M.M. Palcic, “Analysis by capillary electrophoresis-laser-induced fluorescence detection of oligosaccharides produced from enzyme reactions”, J. Chromatogr. A, 716 1995 215–220.

    Article  Google Scholar 

  41. Y. Zhang, X. Le, N.J. Dovichi, C.A. Compston, M.M. Palcic, P. Diedrich, and O. Hindsgaul, “Monitoring biosynthetic transformations of N-acetyllactosamine using fluorescenfly labeled oligosaccharides and capillary electrophoretic separation”. Anal Biochem., 227 1995 368–376.

    Article  Google Scholar 

  42. K.B. Lee, U.R. Desai, M.M. Palcic, O. Hindsgaul, and R.J. Linhardt, “An electrophoresis-based assay for glycosyltransferase activity”, Anal Biochem., 205 1992 108–114.

    Article  Google Scholar 

  43. X.C. Le, Y. Zhang, N.J. Dovichi, C.A. Compston, M.M. Palcic, R.J. Beever, and O. Hindsgaul, “Study of the enzymatic transformation of fluorescently labeled oligosaccharides in human epidermoid cells using capillary electrophoresis with laser-induced fluorescence detection”, J. Chromatogr. A, 781 1997 515–522.

    Article  Google Scholar 

  44. K.P. Bateman, J.H. Banoub, and P. Thibault, “Probing the microheterogeneity of O-specific chains from Yersinia ruckeri using capillary electrophoresis/electrospray mass spectrometry”. Electrophoresis, 17 1996 1818–1828.

    Article  Google Scholar 

  45. J. Kelly, H. Masoud, M.B. Perry, J.C. Richards, and P. Thibault, “Separation and characteriza tion of O-deacetylated lipooligosaccharides and glycans derived from Moraxella catarrhalis using capillary electrophoresis-electrospray mass spectrometry and tandem mass spectrometry”, Anal. Biochem., 233 1996 15–30.

    Article  Google Scholar 

  46. D.M. Richmond, and E.S. Yeung, “Development of laser-excited indirect fluorescence detection for high-molecular-weight polysaccharides in capillary electrophoresis”, Anal. Biochem., 210 1993 245–248.

    Article  Google Scholar 

  47. J. Sudor, and M.V. Novotny, “Electromigration behavior of polysaccharides in capillary electrophoresis under pulsed-field conditions”, Proc. Natl Acad. Sci. USA, 90 1993 9451–9455.

    Article  Google Scholar 

  48. H.-J. Zhong, M.A.K. Williams, R.D. Keenan, D.M. Goodall, and C. Rolin, “Separation and quantification of pectins using capillary electrophoresis; a prelaminary study”, Carbohydr Polymers, 32 1997 27–32.

    Article  Google Scholar 

  49. M. Stefansson, and M.V. Novotny, “Modification of the electrophoretic mobility of neutral and charged polysaccharides”. Anal Chem., 66 1994 3466–3471.

    Article  Google Scholar 

  50. J.D. Brewster, and M.L. Fishman, “Capillary electrophoresis of plant starches as the iodine complexes”, J. Chromatogr A, 693 1995 382–387.

    Article  Google Scholar 

  51. R.A. Dwek, C.J. Edge, D.J. Harvey, M.R. Wormald, and R.B. Parekh, “Analysis of glycoprotein-associated oligosaccharides”, Annu. Rev. Biochem., 62 1993 65–100.

    Article  Google Scholar 

  52. N. Bihoreau, C. Ramon, M. Lazard, and J.M. Schmitter, “Combination of capillary electrophoresis and matrix-assisted laser desorption ionization mass spectrometry for glycosylation analysis of a human monoclonal anti-Rhesus (D) antibody”, J. Chromatogr. B, 697 1997 123–133.

    Article  Google Scholar 

  53. K. Kopp, M. Schlüter, and R.G. Werner, “Monitoring the glycosylation pattern of recombinant interferon-co with high-pH anion-exchange chromatography and capillary electrophoresis”, Arzneim.-Forsch./Drug Res., 46 1996 1191–1196.

    Google Scholar 

  54. F. Kilar, and S. Hjertén, “Separation of the human transferrin isoforms by carrier-free high-performance zone electrophoresis and isoelectric focusing”, J. Chromatogr., 480 1989 351–357.

    Article  Google Scholar 

  55. S.-L. Wu, G. Teshima, J. Cacial, and W.S. Hancock, “Use of high-performance capillary electrophoresis to monitor charge heterogeneity in recombinant-DNA derived proteins”, J. Chromatogr., 516 1990 115–122.

    Article  Google Scholar 

  56. A.D. Tran, S. Park, P.J. Lisi, O.T. Huynh, R.R. Ryall, and P.A. Lane, “Separation of carbohydrate-mediated microheterogeneity of recombinant human erythropoietin by free solution capillary electrophoresis”, J. Chromatogr., 542 1991 459–471.

    Google Scholar 

  57. E. Watson, and F. Yao, “Capillary electrophoretic separation of human recombinant erythropoietin (r-HuEPO) glycoforms”. Anal Biochem., 210 1993 389–393.

    Google Scholar 

  58. H.P. Bietlot, and M. Girard, “Analysis of recombinant human erythropoietin in dmg formulations by high-performance capillary electrophoresis”, J. Chromatogr. A, 759 1997 177–184.

    Article  Google Scholar 

  59. P.D. Grossman, J.C. Colbum, H. Lauer, R.G. Nielsen, R.M. Riggin, G.S. Sittampalan, and E.C. Rickard, “Application of free-solution capillary electrophoresis to the analytical scale separation of proteins and peptides”, Anal. Chem., 61 1989 1186–1194.

    Article  Google Scholar 

  60. P.M. Rudd, I.G. Scragg, E. Coghill, and R.A. Dwek, “Separation and analysis of the glycoform populations of ribonuclease B using capillary electrophoresis”, Glycoconjugate J., 91992 86–91.

    Article  Google Scholar 

  61. S. Honda, A. Makino, S. Suzuki, and K. Kakehi, “Analysis of oligosaccharides in ovalbumin by high-performance capillary electrophoresis”, Anal. Biochem., 191 1990 228–234.

    Article  Google Scholar 

  62. P.J. Landers, R.P. Oda, B.J. Madden, and T.C. Spelsberg, “High-performance capillary electrophoresis of glycoproteins: The use of modifiers of electroosmotic flow for analysis of microheterogeneity”, Anal. Biochem., 205 1992 115–124.

    Article  Google Scholar 

  63. R.P. Oda, B.J. Madden, T.C. Spelsberg, and J.P. Landers, “a, co-Bis-quartemary ammonium alkanes as effective buffer additives for enhanced capillary electrophoretic separation of glycoproteins”, J. Chromatogr. A, 680 1994 85–92.

    Article  Google Scholar 

  64. M.E. Legaz, and M.M. Pedrosa, “Effect of polyamines on the separation of ovalbumin glycol forms by capillary electrophoresis”, J. Chromatogr. A, 719 1996 159–170.

    Article  Google Scholar 

  65. D.E. Morbeck, B.J. Madden, and D.J. McCormick, “Analysis of the microheterogeneity of the glycoprotein chorionic gonadotropin with high-performance capillary electrophoresis”, J. Chromatogr A, 680 1994 217–224.

    Article  Google Scholar 

  66. P. Laidler, D.A. Cowan, R.C. Hider, and A.T. Kicman, “Characterization of human chorionicgonadotropin microheterogeneity by capillary electrophoresis: potential application for quality control in the pharmaceutical industry”, Pharm. Sci., 3 1997 487–491.

    Google Scholar 

  67. K.W. Yim, “Fractionation of the recombinant tissue plasminogen activator (rtPA) glycoforms by high-performance capillary electrophoresis and capillary isoelectric focusing”, J. Chromatogr A, 559 1991 401–410.

    Article  Google Scholar 

  68. J.M. Thome, W.K. Goetzinger, A.B. Chen, K.G. Moorhouse, and B.L. Karger, “Examination of capillary zone electrophoresis, isoelectric focusing and sodium dodecyl sulfate capillary electrophoresis for the analysis of recombinant tissue plasminogen activator”, J. Chromatogr. A, 744 1996 155–165.

    Article  Google Scholar 

  69. A.B. Chen, C.A. Rickel, A. Flanigan, G. Hunt, and K.G. Moorhouse, “Comparison of ampholytes used for slab gel and capillary isoelectric focusing of recombinant tissue-type plasminogen activator glycoforms”, J. Chromatogr. A, 744 1996 279–284.

    Article  Google Scholar 

  70. K.G. Moorhouse, C.A. Eusebio, G. Hunt, and A.B. Chen, “Rapid one-step capillary isoelectric focusing method to monitor charged glycoforms of recombinant human tissue-type plasminogen activator”, J. Chromatogr A, 717 1995 61–69.

    Article  Google Scholar 

  71. K.G. Moorhouse, C.A. Rickel, and A.B. Chen, “Electrophoretic separation of recombinanttissue-type plasminogen activator glycoforms: Validation issues for capillary isoelectric focusing methods”, Electrophoresis, 17 1996 423–430.

    Article  Google Scholar 

  72. F. Kilar, and S. Hjertén, “Unfolding of human serum transferrin in urea studied by high-performance capillary electrophoresis”, J. Chromatogr, 638 1993 269–276.

    Article  Google Scholar 

  73. R.P. Oda, and J.P. Landers, “Effect of cationic buffer additives on the capillary electrophoreticseparation of semm transferrin from different species”, Electrophoresis, 17 1996 431–437.

    Article  Google Scholar 

  74. R.P. Oda, R. Prasad, R.L. Stout, D. Coffin, W.P. Patton, D.L Kraft, J.F. O’Brien, and J.P. Landers, “Capillary electrophoresis-based separation of transferrin sialoforms in patients with carbohydrate-deficient glycoprotein syndrome”, Electrophoresis, 18 1997 1819–1826.

    Article  Google Scholar 

  75. R. Prasad, R. Stout, D. Coffin, and J. Smith, “Analysis of carbohydrate deficient transferrin by capillary zone electrophoresis”, Electrophoresis, 17 1997 1814–1818.

    Article  Google Scholar 

  76. D.C. James, R.B. Freedman, M. Hoare, and N. Jenkins, “High-resolution separation of recombinant human interferon-y glycoforms by micellar electrokinetic capillary chromatography”, Anal Biochem., 222 1994 315–322.

    Article  Google Scholar 

  77. R. Vincentelli, and N. Bihoreau, “Characterization of each isoform of a F(ab’)2 by capillary electrophoresis”, J. Chromatogr., 641 1993 383–390.

    Article  Google Scholar 

  78. S. Hoffstetter-Kuhn, G. Alt, and R. Kuhn, “Profiling of oligosaccharide-mediated microheterogeneity of a monoclonal antibody by capillary electrophoresis”. Electrophoresis, 17 1996 418–422.

    Article  Google Scholar 

  79. A. Rice, J. Grimshaw, J. Trocha-Grimshaw, P. McCarron, and G.B. Wisdom, “Identification of tti-acid glycoprotein (orosomucoid) in human synovial fluid by capillary electrophoresis”, J. Chromatogr A, 722 1997 305–311.

    Article  Google Scholar 

  80. J. Pedersen, and K. Biederman, “Characterization of proteinase A glycoforms from recombinant Saccharomyces cerevisiae” Biotechnol Appl Biochem., 18 1993 377–388.

    Google Scholar 

  81. K. Yim, J. Abrams, and A. Hsu, “Capillary zone elcctrophoretic resolution of recombinant human bone morphogenetic protein 2 glycoforms. An investigation into the separation mechanisms for an exquisite separation”, J. Chromatogr. A, 716 1995 401–412.

    Article  Google Scholar 

  82. N.K. Klausen, and T. Kornfelt, “Analysis of the glycoforms of human recombinant factor Vilaby capillary electrophoresis and high-performance liquid chromatography”, J. Chromatogr. A, 718 1995 195–202.

    Article  Google Scholar 

  83. E. Watson, and F. Yao, “Capillary electrophoretic separation of recombinant granulocyte-colony-stimulating factor glycoforms”, J. Chromatogr, 630 1993 442–446.

    Article  Google Scholar 

  84. M.J. Schmerr, and K.R. Goodwin, “Characterization by capillary electrophoresis of the surface glycoproteins of ovine lentivimses before and after treatment with glycosidic enzymes”, J. Chromatogr A, 652 1993 199–205.

    Article  Google Scholar 

  85. M.G. Trevino, M. Tavema, H. Boureau, P. Bourlioux, and D. Ferrier, “Contribution of capillaryzone electrophoresis to the analysis of cecal mucins”, J. Cap. Elec., 3 1996 287–294.

    Google Scholar 

  86. W.E. Wemer, D.M. Demorest, and J.E. Wiktorowicz, “Automated Ferguson analysis of glycoproteins by capillary electrophoresis using a replaceable sieving matrix”. Electrophoresis, 14 1993 759–763.

    Article  Google Scholar 

  87. R. Bonifichi, “Capillary electrophoresis of glycosylated proteins performed on a conventional capillary gas chromatographic column”, J. Chromatogr. A, 741 1996 139–145.

    Article  Google Scholar 

  88. M. Huang, J. Plocek, and M.V. Novotny, “Hydrolytically stable cellulose-derivative coatings for capillary electrophoresis of peptides, proteins and glycoconjugates”. Electrophoresis, 16 1995 396–401.

    Google Scholar 

  89. Z. El Rassi (ed.), in ‘‘Carbohydrate Analysis”, Journal of Chromatography Library, Vol. 58, Elsevier, 1995, Amsterdam.

    Google Scholar 

  90. J.F. Kelly, S.J. Locke, L. Ramaley, and P. Thibault, “Development of electrophoretic conditions for the characterization of protein glycoforms by capillary electrophoresis-electrospray mass spectrometry”, J. Chromatogr A, 720 1996 409–427.

    Article  Google Scholar 

  91. B. Yeung, T.J. Porter, and J.E. Vath, “Direct isoform analysis of high-mannose-containing glycoproteins by on-line capillary electrophoresis electrospray mass spectrometry”, Anal Chem., 69 1997 2510–2516.

    Article  Google Scholar 

  92. L. Yang, Q. Tang, A.K. Harrata, and C.S. Lee, “Capillary isoelectric focusing-electrosprayionization mass spectrometry for transferrin glycoform analysis”, Anal Biochem., 243 1996 140–149.

    Article  Google Scholar 

  93. J.A. Chakel, E. Pungor, W.S. Hancock, and S.A. Swedberg, “Analysis of DNA-derived glycoproteins via high-perfomance capillary electrophoresis coupled with off-line matrix-assisted laser desorption ionization time-of-flight mass spectrometry”, J. Chromatogr. B, 689 1997 215–220.

    Article  Google Scholar 

  94. W. Nashabeh, and Z. El Rassi, “Capillary zone electrophoresis of ttpacid glycoprotein fragments from trypsin and endoglycosidase digestions”, J. Chromatogr, 536 1991 31–42.

    Article  Google Scholar 

  95. M. Tavema, A. Baillet, D. Biou, M. Schlüter, R. Werner, and D. Ferrier, “Analysis of carbohydrate-mediated heterogeneity and characterization of N-linked oligosaccharides of glycoproteins by high performance capillary electrophoresis”, Electrophoresis, 13 1992 359–366.

    Article  Google Scholar 

  96. J. Jiskra, V. Pacakova, M. Ticha, K. Stulik, and T. Barth, “Use of capillary electrophoresis and high-performance liquid chromatography for monitoring of glycosylation of the peptides dalargin and desmopressin”, J. Chromatogr. A, 761 1997 285–296.

    Article  Google Scholar 

  97. S.R. Rush, P.L. Derby, T.W. Strickland, and M.F. Rohde, “Peptide mapping and evaluation of glycopeptide microheterogeneity derived from endoproteinase digestion of erythropoietin by affinity high-performance capillary electrophoresis”, Anal. Chem., 65 1993 1834–1842.

    Google Scholar 

  98. D.L. LeToumeau, and N.E. Allen, “Use of capillary electrophoresis to measure dimerizadon of glycopeptide anfibiofics”. Anal. Biochem., 246 1997 62–66.

    Article  Google Scholar 

  99. P.L. Weber, T. Komfelt, N.K. Klausen, and S.M. Lunte, “Characterization of glycopepddes from recombinant coagulation factor Vila by high-performance liquid chromatography and capillary zone electrophoresis using ultraviolet and pulsed electrochemical detection”, Anal. Biochem., 225 1995 135–142.

    Google Scholar 

  100. P.L. Weber, and S.M. Lunte, “Capillary electrophoresis with pulsed amperometric detecdon of carbohydrates and glycopepddes”. Electrophoresis, 17 1996 302–309.

    Article  Google Scholar 

  101. A.P. Hunter, and D.E. Games, “Evaluation of glycosyladon site heterogeneity and selective identification of glycopepddes in proteolytic digests of bovine a acid glycoprotein by mass spectrometry”. Rapid Communication in Mass Spectrometry, 9 1995 42–56.

    Article  Google Scholar 

  102. S.-L. Wu, “The use of sequential high-performance liquid chromatography and capillary zone electrophoresis to separate the glycosylated peptides from recombinant tissue plasminogen activator to a detailed level of microheterogeneity”, Anal. Biochem., 253 1997 85–97.

    Article  Google Scholar 

  103. K.R. Birdwell, T.L. Austell, R.S. Black, J.W. Jorgenson, and R.G. Hiskey, “Evaluation of proteolytically released carbohydrate-containing peptides of bovine prothrombin fragment 1 using electrospray ionization mass spectrometry and capillary electrophoresis”, J. Liq. Chrom. & Rel. Technol, 20 1997 987–1004.

    Article  Google Scholar 

  104. A. Klockow-Beck, and A. Paulus, “Carbohydrate analysis with capillary electrophoresis”, in “A laboratory guide to glycoconjugate analysis’’ (ed. P. Jackson and J.T. Gallagher), Birkhäuser, 1997, Basel, 141–158.

    Google Scholar 

  105. O’Neill, “Enzymatic release of oligosaccharides from glycoproteins for chromatographic and electrophoretic analysis”, J. Chromatogr A, 720 1996 201–215.

    Article  Google Scholar 

  106. S. Suzuki, K. Kakehi, and S. Honda, “Two-dimensional mapping of N-glycosidically linked asialo-oligosaccharides from glycoproteins as reductively pyridylaminated derivatives using dual separation modes of high-performance capillary electrophoresis”, Anal. Biochem., 205 1992 227–236.

    Article  Google Scholar 

  107. S.W. Yuen, L.R. Zieske, I.M. Zaidi, D. Fu, and R.A. O’Neill, “A facile method for the release, labeling and CE analysis of glycoprotein oligosaccharides”. Techniques in Protein Chemistry, 5 1994 275–284.

    Google Scholar 

  108. P. Hermentin, R. Witzel, R. Doenges, R. Bauer, H. Haupt, T. Patel, R.B. Parekh, and D. Brazel, “The mapping by high-pH anion-exchange chromatography with pulsed amperometric detection and capillary electrophoresis of the carbohydrate moieties of human plasma ai-acid glycoprotein”, Anal Biochem., 206 1992 419–429.

    Article  Google Scholar 

  109. P. Hermentin, R. Doenges, R. Witzel, C.H. Hokke, J.F.G. Vliegenhart, P. Kamerling, H.S. Conradt, M. Nimtz, and D. Brazel, “A strategy for the mapping of N-glycans by high-performance capillary electrophoresis”. Anal Biochem., 221 1994 29–41.

    Article  Google Scholar 

  110. M. Tavema, A. Baillet, and D. Baylocq-Ferrier, “Analysis of neutral and sialylated N-linked oligosaccharides by micellar electrokinetic capillary chromatography with addition of a divalent cation”, Chromatographia, 37 1993 415–422.

    Article  Google Scholar 

  111. M. Tavema, A. Baillet, M. Schlüter, and D. Baylocq-Ferrier, “N-Glycosylation site mapping of recombinant tissue plasminogen activator by micellar electrokinetic capillary chromatography”, Biomed. Chromatogr, 9 1995 59–67.

    Article  Google Scholar 

  112. K.F. Greve, D.E. Hughes, and B.L. Karger, “Capillary electrophoretic examination of un derivatized mixtures released from immunoglobulin G antibodies and CTLA4Ig fusion protein”, J. Chromatogr A, 749 1996 237–245.

    Article  Google Scholar 

  113. K. Kakehi, A. Susami, A. Taga, S. Suzuki, and S. Honda, “High-performance capillary electrophoresis of O-glycosidically linked sialic acid-containing oligosaccharides in glycoproteins as their alditol derivatives with low-wavelength UV monitoring”, J. Chromatogr A, 680 1994 209–215.

    Article  Google Scholar 

  114. P. Jackson, “The use of polyacrylamide-gel electrophoresis for the high-resolution separation of reducing saccharides labelled with the fluorophore 8-aminonaphthalene-1,3,6-trisulphonic acid”, Biochem. J., 270 1990 705–713.

    Google Scholar 

  115. P. Jackson, “Polyacrylamide gel electrophoresis of reducing saccharides labeled with the fluo rophore 2-aminoacridone: subpicomolar detection using an imaging system based on a cooled charge-coupled device”. Anal Biochem., 196 1991 238–244.

    Article  Google Scholar 

  116. A. Klockow, R. Amado, H.M. Widmer, and A. Paulus, “Separation of 8-aminonaphthalene-1,3,6-trisulfonic acid -labelled neutral and sialylated N-linked complex oligosaccharides by capillary electrophoresis”, J. Chromatogr A, 716 1995 241–257.

    Article  Google Scholar 

  117. P. Camilleri, G.B. Harland, and G. Okafo, “High resolution and rapid analysis of branched oligosaccharides by capillary electrophoresis”. Anal Biochem., 230 1995 115–122.

    Article  Google Scholar 

  118. A. Paulus, and A. Klockow, “Detection of carbohydrates in capillary electrophoresis”, J. Chromatogr A, 720 1996 353–376.

    Article  Google Scholar 

  119. A. Guttman, and C. Starr, “Capillary and slab gel electrophoresis profiling of oligosaccharides”. Electrophoresis, 16 1995 993–997.

    Article  Google Scholar 

  120. G.B. Harland, G. Okafo, P. Matejtschuk, J.C. Sellick, G.E. Chapman, and P. Camilleri, “Fin gerprinting of glycans as their 2-aminoacridone derivatives by capillary electrophoresis and laser-induced fluorescence”, Electrophoresis, 17 1996 406–411.

    Article  Google Scholar 

  121. G. Okafo, L.M. Burrow, W. Neville, A. Tmneh, R.A.G. Smith, M. Reff, and P. Camilleri, “Simple differentiation between core-fucosylated and nonfucosylated glycans by capillary electrophoresis”, Anal Biochem., 240 1996 68–74.

    Article  Google Scholar 

  122. G. Okafo, L. Burrow, S.A. Cary, G.D. Roberts, W. Johnson, and P. Camilleri, “A coordinated high-performance liquid chromatographic, capillary electrophoretic, and mass spectrometric approach for the analysis of oligosaccharide mixtures derivatized with 2-aminoacridone”, Anal Chem., 68 1996 4424–4430.

    Article  Google Scholar 

  123. A. Guttman, and T. Pritchett, “Capillary gel electrophoresis separation of high-mannose type oligosaccharides derivatized by l-aminopyrene-3,6,8-trisulfonic acid”. Electrophoresis, 16 1995 1906–1911.

    Article  Google Scholar 

  124. A. Guttman, F.-T.A. Chen, and R.A. Evangelista, “Separation of l-aminopyrene-3,6,8-trisulfonate-labeled asparagine-linked fetuin glycans by capillary gel electrophoresis”, Electrophoresis, 77 1996 412–417.

    Article  Google Scholar 

  125. A. Guttman, and S. Herrick, “Effect of the quantity and linkage position of mannose (al,2) residues in capillary gel electrophoresis of high mannose type oligosaccharides”, Anal Biochem., 235 1996 236–239.

    Article  Google Scholar 

  126. A. Guttman, and K. Williams Ulfelder, “Exoglycosidase matrix-mediated sequencing of a complex glycan pool by capillary electrophoresis”, J. Chromatogr A, 781 1997 547–554.

    Article  Google Scholar 

  127. A. Guttman, “Multistructure sequencing of N-linked fetuin glycans by capillary gel electrophoresis and enzyme matrix digestion”. Electrophoresis, 18 1997 1136–1141.

    Article  Google Scholar 

  128. H. Suzuki, O. Müller, A. Guttman, and B.L. Karger, “Analysis of l-aminopyrene-3,6,8-trisulfonate derivatized oligosaccharides by capillary electrophoresis with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry”. Anal Chem., 69 1997 4554–4559.

    Article  Google Scholar 

  129. K.N. Gu, R.J. Linhardt, M. Laliberte, K. Gu, and J. Zimmermann, “Purification, characterization and specificity of chondroitin lyases and glycuronidase from Flavobacterium heparinum” Biochem. J., 312 1995 569–577.

    Google Scholar 

  130. U.R. Desai, H.-M. Wang, and R.J. Linhardt, “Substrate speciflty of the heparin lyases from flavobacterium heparinum” Arch. Biochem. Biophys., 306 1993 461–468.

    Article  Google Scholar 

  131. J. Grimshaw, “Analysis of gycosaminoglycans and their oligosaccharide fragments by capillary electrophoresis”. Electrophoresis, 18 1997 2408–2414.

    Article  Google Scholar 

  132. A. Al-Hakim, and R.J. Linhardt, “Capillary electrophoresis for the analysis of chondroitin sulfate- and dermatan sulfate-derived disaccharides”. Anal Biochem., 195 1991 68–73.

    Article  Google Scholar 

  133. S.L. Carney, and D.J. Osborne, “The separation of chondroitin sulfate disaccharides and hyaluronan oligosaccharides by capillary zone electrophoresis”, Anal Biochem., 195 1991 132–140.

    Article  Google Scholar 

  134. S.A. Ampofo, H.-M. Wang, and R.J. Linhardt, “Disaccharide compositional analysis of heparin and heparan sulfate using capillary electrophoresis”, Anal Biochem., 199 1991 249–255.

    Article  Google Scholar 

  135. J.B.L. Damm, G.T. Overklift, B.M.W. Vermeulen, C.F. Fluitsma, and G.W.K, van Dedem, “Separation of natural and synthetic heparin fragments by high-performance capillary electrophoresis”, J. Chromatogr, 608 1992 297–309.

    Article  Google Scholar 

  136. J.B.L. Damm, and G.T. Overklift, “Indirect UV detection as a non-selective detection method in the qualitative and quantitative analysis of heparin fragments by high-performance capillary electrophoresis”, J. Chromatogr A, 678 1994 151–165.

    Article  Google Scholar 

  137. U.R. Desai, H.-M. Wang, S.A. Ampofo, and R.J. Linhardt, “Oligosaccharide composition of heparin and low-molecular weight heparins by capillary electrophoresis”, Anal Biochem., 213 1993 120–127.

    Article  Google Scholar 

  138. A. Pervin, A. Al-Hakim, and R.J. Linhardt, “Separation of glycosaminoglycan-derived oligosac charides by capillary electrophoresis using reversed polarity”. Anal Biochem., 221 1994 182–188.

    Article  Google Scholar 

  139. S. Mayer, and M. Schleimer, “Quantitative determination of heparinoid mimetics in human and rat plasma by micellar electrokinetic chromatography”, J. Chromatogr. A, 730 1996 297–303.

    Article  Google Scholar 

  140. Z. Mala, L. Krivankova, and P. Bocek, “Analysis of heparin-like pharmaceuticals by capillary zone electrophoresis and isotachophoresis”, Electrophoresis, 77 1996 125–129.

    Article  Google Scholar 

  141. L. Scapol, E. Marchi, and G.C. Viscomi, “Capillary electrophoresis of heparin and dermatan sulfate unsaturated disaccharides with triethylamine and acetonitrile as electrolyte additives”, J. Chromatogr A, 735 1996 367–374.

    Article  Google Scholar 

  142. S. Michaelsen, M. Schroder, and H. Sorensen, “Separation and determination of glycosamino glycan disaccharides by micellar electrokinetic chromatography for studies of pelt glycosaminoglycans”, J. Chromatogr. A, 652 1993 503–515.

    Article  Google Scholar 

  143. E.P. Lillehoj, and S.S. Alexander, “Viring associated trans-regulatory protein of human leuke mia vims type I”, Aids Res. Human Retrovir, 8 1992 237–244.

    Article  Google Scholar 

  144. R.J. Linhardt, U.R. Desai, J. Liu, A. Pervin, D. Hoppenstaedt, and J. Fareed, “Low molecular weight dermatan sulfate as an antithrombotic agent”, Biochem. Pharmacol., 47 1994 1241-1252.

    Article  Google Scholar 

  145. N.K. Karamanos, S. Axelsson, P. Vanky, G.N. Tzanakakis, and A. Hjerpe, “Determination of hyaluronan and galactosaminoglycan disaccharides by high-performance capillary electrophoresis at the attomole level. Applications to analysis of tissue and cell culture proteoglycans”, J. Chromatogr A, 696 1995 295–305.

    Article  Google Scholar 

  146. A. Denuziere, M. Tavema, D. Ferrier, and A. Domard, “Capillary electrophoresis of glycosami-noglycan-derived disaccharides: Application to stability studies of glyosaminoglycan chitosan complexes”, Electrophoresis, 18 1997 745–750.

    Article  Google Scholar 

  147. S. Hyase, Y. Oda, S. Honda, and K. Kakehi, “High-performance capillary electrophoresis of hyaluronic acid: determination of its amounts and molecular mass”, J. Chromatogr. A, 768 1997 295–305.

    Article  Google Scholar 

  148. J. Grimshaw, A. Kane, J. Trocha-Grimshaw, A. Douglas, U. Chakravathy, and D. Archer, “Quantitative analysis of hyaluronan in vitreous humor using capillary electrophoresis”, Electrophoresis, 15 1994 936–940.

    Article  Google Scholar 

  149. J. Grimshaw, J. Trocha-Grimshaw, W. Fisher, A. Rice, S. Smith, P. Spedding, J. Duffy, and R. Molían, “Quantitative analysis of hyaluronan in human synovial fluid using capillary electrophoresis”, Electrophoresis, 77 1996 396–400.

    Article  Google Scholar 

  150. S. Pattanaargson, and J. Roboz, “Determination of hyaluronidase activity in venoms using capillary electrophoresis”, Toxicon, 34 1996 1107–1117.

    Article  Google Scholar 

  151. N.K. Karamanos, and A. Hjerpe, “High-performance capillary electrophoretic analysis of hyaluronan in effusions from human malignant mesothelioma”, J. Chromatogr B, 697 1997111–281.

    Article  Google Scholar 

  152. S. Honda, T. Ueno, and K. Kakehi, “High-performance capillary electrophoresis of unsaturated oligosaccharides derived from glycosylaminoglycans by digestion with chondroitinase ABC as l-phenyl-3-methyl-5-pyrazolone derivatives”, J. Chromatogr, 608 1992 289–295.

    Article  Google Scholar 

  153. Z. El Rassi, J. Posflewait, Y. Mechref, and G.K. Ostrander, “Capillary electrophoresis of car boxylated carbohydrates”. Anal. Biochem., 244 1997 283–290.

    Article  Google Scholar 

  154. T. Toida, and R.J. Linhardt, “Detection of glycosaminoglycans as a copper (II) complex in capillary electrophoresis”. Electrophoresis, 17 1996 341–346.

    Article  Google Scholar 

  155. Y. Liu, and J.K.-F. Chan, “High-performance capillary electrophoresis of ganghosides”, Elec trophoresis, 12 1991 402–408.

    Article  Google Scholar 

  156. Y.S. Yoo, Y.S. Kim, G.-J. Jhon, and J. Park, “Separation of gangliosides using cyclodextrins in capillary zone electrophoresis”, J. Chromatogr A, 652 1993 431–439.

    Article  Google Scholar 

  157. Y. Mechref, G.K. Ostrander, and Z. El Rassi, “Capillary electrophoresis of carboxylated carbo hydrates I. Selective precolumn derivatization of gangliosides with UV absorbing and fluorescent tags”, J. Chromatogr A, 695 1995 83–95.

    Article  Google Scholar 

  158. Y. Mechref, G.K. Ostrander, and Z. El Rassi, “Capillary electrophoresis of carboxylated carbo hydrates. Part 2. Selective precolumn derivatization of sialooligosaccharides derived from gangliosides with 7-aminonaphthalene-l,3-disulfonic acid fluorescing tag”, Electrophoresis, 16 1995 1499–1504.

    Article  Google Scholar 

  159. Ph. Morin, F. Villard, and M. Dreux, “Borate complexation of flavonoid-O-glycosides in capillary electrophoresis I. Separation of flavonoid-7-O-glycosides differing in their flavonoid aglycone”, J.Chromatogr., 628 1993 153–160.

    Article  Google Scholar 

  160. Ph. Morin, F. Villard, M. Dreux, and P. André, “Borate complexation of flavonoid-O-glycosides in capillary electrophoresis II. Separation of flavonoid-3-O-glycosides differing in their sugar moiety”, J. Chromatogr, 628 1993 161–169.

    Article  Google Scholar 

  161. U. Seitz, P.J. Oefner, S. Nathakamkitkool, M. Popp, and G.K. Bonn, “Capillary electrophoreticanalysis of flavonoids”, Electrophoresis, 13 1992 35–38.

    Article  Google Scholar 

  162. T.K. McGhie, “Analysis of sugarcane flavonoids by capillary zone electrophoresis”, J. Chro matogr, 634 1993 107–112.

    Article  Google Scholar 

  163. F. de Simon, I. Estrella, and T. Hernandez, “Flavonoid separation by capillary electrophoresis. Effect of temperature and pH.”, Chromatographia, 41 1995 389–392.

    Article  Google Scholar 

  164. C. Bjergegaard, S. Michaelsen, K. Mortensen, and H. Sorensen, “Determination of flavonoids by micellar electrokinetic capillary chromatography”, J. Chromatogr. A, 652 1993 477–485.

    Article  Google Scholar 

  165. H.-J. Gaus, A. Treumann, W. Kreis, and E. Bayer, “Separation of cardiac glycosides by micellar electrokinetic capillary electrophoresis”, J. Chromatogr, 635 1993 319–327.

    Article  Google Scholar 

  166. S. Michaelsen, P. Moller, and H. Sorensen, “Factors influencing the separation and quantitation of intact glucosinolates and desulphoglucosinolates by micellar electrokinetic capillary chromatography”, J. Chromatogr, 608 1992 363–374.

    Article  Google Scholar 

  167. J. Liu, O. Shirota, and M. Novotny, “Capillary electrophoresis of amino sugars with laser-induced fluorescence detection”, Anal. Chem., 63 1991 413–417.

    Article  Google Scholar 

  168. J.T. Smith, and Z. El Rassi, “Capillary zone electrophoresis of biological substances with surface-modified fused silica capillaries with switchable electroosmotic flow”, High Res. Chromatogr, 15 1992 573–578.

    Article  Google Scholar 

  169. V. Steiner, R. Knecht, K.O. Börnsen, E. Gassmann, S.R. Stone, F. Raschdorf, J.-M. Schlaeppt, and R. Maschler, “Primary structure and function of novel O-glycosylated hirudin from the Leech Hirudinaria manillensis”, Biochem., 31 1992 2294–2298.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden

About this chapter

Cite this chapter

Paulus, A., Klockow-Beck, A. (1999). Applications. In: Analysis of Carbohydrates by Capillary Electrophoresis. Chromatographia CE-Series, vol 3. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-85020-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-85020-1_5

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-322-85022-5

  • Online ISBN: 978-3-322-85020-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics