Skip to main content

Signed Dual Tableaux for Kleene Answer Set Programs

  • Chapter
  • First Online:
Ewa Orłowska on Relational Methods in Logic and Computer Science

Part of the book series: Outstanding Contributions to Logic ((OCTR,volume 17))

Abstract

Dual tableaux were introduced by Rasiowa and Sikorski (1960) as a cut free deduction system for classical first-order logic. In the current paper, a sound and complete proof procedure based on dual tableaux is proposed for \({R}_3\), which is the standard Kleene logic augmented with a weak negation connective and an implication connective proposed, in another context, by Shepherdson (1989). \({R}_3\) is used as a basis for defining Kleene Answer Set Programs (\(\textsc {ASP}^{K}\)programs). The semantics for \(\textsc {ASP}^{K}\)programs is based on strongly supported models. Both entailment procedures and model generation procedures for normal and non-normal \(\textsc {ASP}^{K}\)programs are proposed based on the use of dual tableaux and a model filtering technique. The dual tableau proof procedure extended with a model filtering technique is shown to be sound and complete for \(\textsc {ASP}^{K}\)programs, both normal and non-normal. Since there is a direct relationship between answer sets for classical ASP programs and \({R}_3\) models for \(\textsc {ASP}^{K}\)programs, it can be shown that the sound and complete dual tableaux proof procedure with filtering for \(\textsc {ASP}^{K}\)programs is also sound and complete for classical normal ASP programs. For classical non-normal ASP programs, the proof procedure is only sound, since an alternative semantics for disjunction is used in \(\textsc {ASP}^{K}\).

This work is partially supported by the Swedish Research Council (VR) Linnaeus Center CADICS, the ELLIIT network organization for Information and Communication Technology, the Swedish Foundation for Strategic Research (SymbiCloud Project), and the Vinnova NFFP6 Project 2013-01206.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For clarity, in the current paper we restrict the results to the propositional case, but they are easily generalized to the first-order case with certain restrictions.

  2. 2.

    Strong negation, conjunction and disjunction have also been used earlier, by Łukasiewicz (1920).

  3. 3.

    We often identify signs with sets of truth values contained in signs.

  4. 4.

    Note that minimality in the context of disjunction is often not required or may even be undesirable – see, e.g., (Doherty and Szałas 2015; Ferraris and Lifschitz 2011; Małuszyński and Szałas 2010; Sakama and Inoue 1994; Smullyan 1968).

  5. 5.

    Assuming that the polynomial hierarchy does not collapse.

References

  • Baral, C. (2003). Knowledge Representation, Reasoning, and Declarative Problem Solving. Cambridge: Cambridge University Press.

    Google Scholar 

  • Beth, E. W. (1955). Semantic entailment and formal derivability. Mededelingen van de Koninklijke Nederlandse Akademie van Wetenschappen, 18(13), 309–342. Reprinted in Hintikka (1969).

    Google Scholar 

  • Borkowski, L. (Ed.). (1970). Selected Works by Jan Łukasiewicz. Amsterdan: North-Holland.

    Google Scholar 

  • Bresolin, D., Golińska-Pilarek, J., & Orłowska, E. (2006). A relational dual tableaux for interval temporal logics. Journal of Applied Non-classical Logics, 16(3–4), 251–277.

    Article  Google Scholar 

  • Brewka, G., Eiter, T., & Truszczyński, M. (2011). Answer set programming at a glance. Communications of the ACM, 54(12), 92–103.

    Article  Google Scholar 

  • Brewka, G., Niemela, I., & Truszczyński, M. (2003). Answer set optimization. In G. Gottlob & T. Walsh (Eds.), IJCAI-03, Proceedings of the 18th International Joint Conference on Artificial Intelligence (pp. 867–872). Acapulco, Mexico: Morgan Kaufmann.

    Google Scholar 

  • Cantone, D., Nicolosi Asmundo, M., & Orłowska, E. (2011). Dual tableau-based decision procedures for relational logics with restricted composition operator. Journal of Applied Non-classical Logics, 21(2), 177–200.

    Article  Google Scholar 

  • Cantone, D., Nicolosi Asmundo, M., & Orłowska, E. (2014). A dual tableau-based decision procedure for a relational logic with the universal relation. In L. Giordano, V. Gliozzi, & G. Pozzato (Eds.), Proceedings of the 29th Italian Conference on Computational Logic (Vol. 1195, pp. 194–209). CEUR Workshop Proceedings. Torino, Italy: CEUR-WS.org.

    Google Scholar 

  • Chan, E. P. F. (1993). A possible world semantics for disjunctive databases. IEEE Transactions on Knowledge and Data Engineering, 5(2), 282–292.

    Article  Google Scholar 

  • D’Agostino, M., Gabbay, D. M., Hähnle, R., & Posegga, J. (Eds.). (1999). Handbook of Tableau Methods. Dordrecht-Boston-London: Springer Netherlands.

    Google Scholar 

  • Doherty, P. (1991). A constraint-based approach to proof procedures for multivalued logics. In M. De Glas & D. M. Gabbay (Eds.), Proceedings of the 1st World Conference on Fundamentals of Artificial Intelligence, WOCFAI. Paris, France: Springer.

    Google Scholar 

  • Doherty, P., Kvarnstrom, J., & Szałas, A. (2016). Iteratively-supported formulas and strongly supported models for Kleene answer set programs (extended abstract). In L. Michael & A. C. Kakas (Eds.), Proceedings of Logics in Artificial Intelligence – 15th European Conference, JELIA (Vol. 10021, pp. 536–542). Lecture Notes in Computer Science. Larnaca, Cyprus.

    Chapter  Google Scholar 

  • Doherty, P. & Szałas, A. (2015). Stability, supportedness, minimality and Kleene answer set programs. In T. Eiter, H. Strass, M. Truszczyński, & S. Woltran (Eds.), Advances in Knowledge Representation, Logic Programming, and Abstract Argumentation: Essays dedicated to Gerhard Brewka on the Occasion of his 60th Birthday (Vol. 9060, pp. 125–140). Lecture Notes in Computer Science. Berlin: Springer.

    Chapter  Google Scholar 

  • Doherty, P. & Szałas, A. (2016). An entailment procedure for kleene answer set programs. In C. Sombattheera, F. Stolzenburg, F. Lin, & A. C. Nayak (Eds.), Proceedings of Multi-disciplinary Trends in Artificial Intelligence – 10th International Workshop, MIWAI (Vol. 10053, pp. 24–37). Lecture Notes in Computer Science. Chiang Mai, Thailand: Springer.

    Google Scholar 

  • Eiter, T., Faber, W., Fink, M., & Woltran, S. (2007). Complexity results for answer set programming with bounded predicate arities and implications. Annals of Mathematics and Artificial Intelligence, 51(2–4), 123–165.

    Article  Google Scholar 

  • Eiter, T. & Gottlob, G. (1993). Complexity results for disjunctive logic programming and application to nonmonotonic logics. In D. Miller (Ed.), Logic Programming, Proceedings of the 1993 International Symposium (pp. 266–278). Vancouver, Canada: MIT Press.

    Google Scholar 

  • Ferraris, P. & Lifschitz, V. (2011). On the minimality of stable models. In M. Balduccini & T. C. Son (Eds.), Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning: Essays Dedicated to Michael Gelfond on the Occasion of his 65th Birthday (Vol. 6565, pp. 64–73). Lecture Notes in Computer Science. Berlin: Springer.

    Google Scholar 

  • Gebser, M., Kaminski, R., Kaufmann, B., & Schaub, T. (2012). Answer Set Solving in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning. New York: Morgan and Claypool Publishers.

    Article  Google Scholar 

  • Gebser M. & Schaub, T. (2013). Tableau calculi for logic programs under answer set semantics. ACM Transactions on Computational Logic, 14(2), 15:1–15:40.

    Article  Google Scholar 

  • Gelfond, M. & Kahl, Y. (2014). Knowledge Representation, Reasoning, and the Design of Intelligent Agents: The Answer-set Programming Approach. Cambridge: Cambridge University Press.

    Google Scholar 

  • Gelfond, M. & Lifschitz, V. (1988). The stable model semantics for logic programming. In R. A. Kowalski & K. A. Bowen (Eds.), Logic Programming, Proceedings of the 5th International Conference and Symposium (Vol. 2, pp. 1070–1080). Seattle, USA: MIT Press.

    Google Scholar 

  • Gelfond, M. & Lifschitz, V. (1991). Classical negation in logic programs and disjunctive databases. New Generation Computing, 9(3/4), 365–386.

    Article  Google Scholar 

  • Gentzen, G. (1934). Untersuchungen über das logische Schließen I. Mathematische Zeitschrift, 39(2), 176–210.

    Google Scholar 

  • Gentzen, G. (1935). Untersuchungen über das logische Schließen II. Mathematische Zeitschrift, 39(3), 405–431.

    Google Scholar 

  • Golińska-Pilarek, J., Muñoz-Velasco, E., & Mora Bonilla, A. (2012). Relational dual tableau decision procedure for modal logic K. Logic Journal of the IGPL, 20(4), 747–756.

    Article  Google Scholar 

  • Golińska-Pilarek, J. & Orłowska, E. (2007). Tableaux and dual tableaux: Transformation of proofs. Studia Logica, 85(3), 291–310.

    Article  Google Scholar 

  • Golińska-Pilarek, J. & Orłowska E. (2008). Logics of similarity and their dual tableaux: A survey. In G. Della Riccia, D. Dubois, R. Kruse, & H. -J. Lenz (Eds.), Preferences and Similarities (Vol. 504, pp. 129–159). CISM Courses and Lectures. Wien-New York: Springer.

    Chapter  Google Scholar 

  • Golińska-Pilarek, J. & Orłowska, E., (2011). Dual tableau for monoidal triangular norm logic MTL. Fuzzy Sets and Systems, 162, 39–52.

    Article  Google Scholar 

  • Hähnle, R. (1991). Uniform notation of tableau rules for multiple-valued logics. In Proceedings of the 21st International Symposium on Multiple-Valued Logic, ISMVL 1991 (pp. 238–245). Victoria, Canada: IEEE Computer Society.

    Google Scholar 

  • Hähnle, R. (1999). Tableaux for many-valued logics. In M. D’Agostino, D. M. Gabbay, R. Hähnle, & J. Posegga (Eds.), Handbook of Tableau Methods (pp. 529–580). Dordrecht-Boston-London: Springer Netherlands.

    Chapter  Google Scholar 

  • Hintikka, J. (Ed.). (1969). The Philosophy of Mathematics. Oxford: Oxford University Press.

    Google Scholar 

  • Kanger, S. (1957). Provability in Logic. Stockholm: Almqvist & Wiksell.

    Google Scholar 

  • Kleene, S. C. (1938). On notation for ordinal numbers. Journal of Symbolic Logic, 3(4), 150–155.

    Article  Google Scholar 

  • Konikowska, B., Morgan, C., & Orłowska, E. (1998). A relational formalisation of arbitrary finite-valued logics. Logic Journal of the IGPL, 6(5), 755–774.

    Article  Google Scholar 

  • Konikowska, B. & Orłowska, E. (2001). A relational formalisation of a generic many-valued modal logic. In E. Orłowska & A. Szałas (Eds.), Relational Methods for Computer Science Applications (Vol. 65, pp. 183–202). Studies in Fuzziness and Soft Computing. Heidelberg: Springer-Physica Verlag.

    Chapter  Google Scholar 

  • Leone, N., Rullo, P., & Scarcello, F. (1997). Disjunctive stable models: Unfounded sets, fixpoint semantics, and computation. Information and Computation, 135(2), 69–112.

    Article  Google Scholar 

  • Lifschitz, V. (2010). Thirteen definitions of a stable model. In A. Blass, N. Dershowitz, & W. Reisig (Eds.), Fields of Logic and Computation, Essays Dedicated to Yuri Gurevich on the Occasion of his 70th Birthday (Vol. 6300, pp. 488–503). Lecture Notes in Computer Science. Berlin: Springer.

    Chapter  Google Scholar 

  • Lifschitz, V. & Razborov, A. A. (2006). Why are there so many loop formulas? ACM Transansactions on Computational Logic, 7(2), 261–268.

    Article  Google Scholar 

  • Łukasiewicz, J. (1920). O logice trójwartościowej (in Polish). Ruch Filozoficzny, 5, 170–171. English translation: Borkowski (1970, pp. 87–88).

    Google Scholar 

  • Małuszyński, J. & Szałas, A. (2010). Living with inconsistency and taming nonmonotonicity. In O. de Moor, G. Gottlob, T. Furche, & A. J. Sellers (Eds.), Datalog Reloaded – 1st International Workshop, Datalog. Revised Selected Papers (Vol. 6702, pp. 384–398). Lecture Notes in Computer Science. Oxford, UK: Springer.

    Google Scholar 

  • Orłowska, E. & Golińska-Pilarek, J. (2011). Dual Tableaux: Foundations, Methodology, Case Studies. Trends in Logic. Dordrecht-Heidelberg-London-New York: Springer.

    Book  Google Scholar 

  • Rasiowa, H. & Sikorski, R. (1960). On the Gentzen theorem. Fundamenta Mathematicae, 48, 57–69.

    Article  Google Scholar 

  • Sakama, C. & Inoue, K. (1994). An alternative approach to the semantics of disjunctive logic programs and deductive databases. Journal of Automated Reasoning, 13(1), 145–172.

    Article  Google Scholar 

  • Shepherdson, J. C. (1989). A sound and complete semantics for a version of negation as failure. Theoretical Computer Science, 65(3), 343–371.

    Article  Google Scholar 

  • Smullyan, R. (1968). First-order Logic. New York: Dover Publications.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Szałas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Doherty, P., Szałas, A. (2018). Signed Dual Tableaux for Kleene Answer Set Programs. In: Golińska-Pilarek, J., Zawidzki, M. (eds) Ewa Orłowska on Relational Methods in Logic and Computer Science. Outstanding Contributions to Logic, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-97879-6_9

Download citation

Publish with us

Policies and ethics