Skip to main content

Reasoning on Relations, Modalities, and Sets

  • Chapter
  • First Online:
Ewa Orłowska on Relational Methods in Logic and Computer Science

Part of the book series: Outstanding Contributions to Logic ((OCTR,volume 17))

Abstract

This survey discusses the interplay among unquantified relational logics, propositional modal logics, and set theories. To set up a common ground, cross-translation methods among languages commonly used to work with relations, modalities, and sets, are revisited. This paper also reports on many experiments aimed at providing automated support for reasoning based on the calculus of dyadic relations.

The authors are members of the INdAM Research group GNCS. This research has been partially supported by INdAM-GNCS grants, and by the projects YASMIN (R.d.B.–UniPG2016–17) and FRA-UniTS (2014 and 2016).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We are referring to the action COST n.274 (2002–2005), whose acronym stands for ‘Theory and Applications of Relational Structures as Knowledge Instruments’.

  2. 2.

    Equipollence in means of expression is being referred to, here and throughout. Equipollence in means of proof requires in fact the associative law for \(\varvec{;}\,\), which, as Tarski showed, is not provable in first-order logic restricted to three variables—four variables are required. Equipollence of both kinds is achieved when conjugated quasi-projections (as discussed in the ongoing) are available.

  3. 3.

    In what follows, we will denote these three conditions, separately, by \(\mathbf{(Pair)}_{1}\), \(\mathbf{(Pair)}_{2}\), and \(\mathbf{(Pair)}_{3}\), respectively.

  4. 4.

    We remark that symbols such as \(\in \) and \(\subseteq \) should not be confused with the corresponding set-theoretic symbols used at the meta-level.

  5. 5.

    That is, atomic elements of some unspecified sort.

  6. 6.

    We thank the anonymous referee for suggesting the question of generalizing the first example to Sahlqvist formulae.

  7. 7.

    Our rationale for keeping the predicate \(\mathsf {in}\) distinct from membership is that we must avoid constraining the primitive \(\in \) too much in the present context—e.g., as already noticed, an extensional \(\in \) would not do to our case.

  8. 8.

    For 19 alternative versions of this axiom, (cf. Paulson and Grąbczewski 1996), p.309.

  9. 9.

    Notice that when c belongs to \(a_{\ell }\) (\(\ell =0,1\)), then \(c\subsetneq a_{1-\ell }\); hence there is a \(c'\) in \(a_{1-\ell }\setminus c\), so that c belongs to \(c'\). Then \(c'\subsetneq a_{\ell }\), and so on. Starting w.l.o.g. with \(c_0\) in \(a_0\), one finds distinct sets \(c_0,c_1,c_2,\ldots \) with \(c_{\ell +2\cdot i}\) in \(a_\ell \) for \(\ell =0,1\) and \(i=0,1,2,\ldots \,.\).

  10. 10.

    The interested reader can find all sources and output files of the Otter theorem prover in http://www.dmi.unipg.it/formis/tarski. (The theorem prover Prover9 (McCune 2010) can be used as well).

  11. 11.

    As a matter of fact, (R) will play no role in this task; nor will, for the limited goal of proving \(\mathsf{Func}\mathsf{(}{\varvec{\pi }_{0}}\mathsf{)}\) and \(\mathsf{Func}\mathsf{(}{\varvec{\pi }_{1}}\mathsf{)}\), any of the proper axioms.

  12. 12.

    In the special case when \(Q\mathbf{=}{{\varnothing }}\), Lemma 6.1 boils down to the relatively intuitive fact that \(\mathsf{Func}\mathsf{(}{R^\mathbf{-1}}\mathsf{)}\) holds for any \(R^\mathbf{-1}\) which is the functional part of some relation.

  13. 13.

    An anonymous referee of this paper pointed out that also the stronger implication

    $$S\,\varvec{;}\,\texttt {1}\!\!\texttt {l}\mathbf{=}\texttt {1}\!\!\texttt {l}\wedge S\,\varvec{;}\,E \varvec{\subseteq }P\wedge N\,\varvec{;}\,E^\mathbf{-1}\mathbf{=}\texttt {1}\!\!\texttt {l}\rightarrow P \,\varvec{;}\,N^\mathbf{-1}\mathbf{=}\texttt {1}\!\!\texttt {l}$$

    (obtained by deleting “\(\texttt {1}\!\!\texttt {l}\,\varvec{;}\,N\varvec{\cup }\)”) can be established outright.

References

  • Aczel, P. (1988). Non-well-founded Sets. CSLI Lecture Notes.

    Google Scholar 

  • Bresolin, D., Golińska-Pilarek, J., & Orłowska, E. (2006). A relational dual tableaux for interval temporal logics. Journal of Applied Non-classical Logics, 16(3–4), 251–278.

    Article  Google Scholar 

  • Brink, C., Kahl, W., & Schmidt, G. (Eds.). (1997). Relational Methods in Computer Science. Advances in Computing Science. New York: Springer.

    Google Scholar 

  • Burrieza, A., Mora, A., Ojeda-Aciego, M., & Orłowska, E. (2009). An implementation of a dual tableaux system for order-of-magnitude qualitative reasoning. International Journal of Computer Mathematics, 86(10–11), 1852–1866.

    Article  Google Scholar 

  • Caianiello, P., Costantini, S., & Omodeo, E. G. (2003). An environment for specifying properties of dyadic relations and reasoning about them I: Language extension mechanisms. In H. de Swart, E. Orłowska, M. Roubens, & G. Schmidt (Eds.), Theory and Applications of Relational Structures as Knowledge Instruments (Vol. 2929, pp. 87– 106). Lecture Notes in Computer Science. Berlin: Springer.

    Google Scholar 

  • Cantone, D., Cavarra, A., & Omodeo, E. (1997). On existentially quantified conjunctions of atomic formulae of \({\mathscr {L}^+}\). In M. P. Bonacina & U. Furbach (Eds.), Proceedings of the FTP97 International Workshop on First-Order Theorem Proving (97–50, pp. 45–52). RISC-Linz Report Series.

    Google Scholar 

  • Cantone, D., Omodeo, E., & Policriti, A. (2001). Set Theory for Computing–From Decision Procedures to Declarative Programming with Sets. Monographs in Computer Science. Berlin: Springer.

    Google Scholar 

  • Cantone, D., Formisano, A., Omodeo, E., & Zarba, C. G. (2003). Compiling dyadic first-order specifications into map algebra. Theoretical Computer Science, 293(2), 447–475.

    Article  Google Scholar 

  • Cantone, D., Formisano, A., Nicolosi Asmundo, M., & Omodeo, E. (2012). A graphical representation of relational formulae with complementation. RAIRO – Theoretical Informatics and Applications, 46(2), 261–289.

    Article  Google Scholar 

  • Cohen, P. J. (1966). Set Theory and the Continuum Hypothesis. New York: Benjamin.

    Google Scholar 

  • D’Agostino, G., Montanari, A., & Policriti, A. (1995). A set-theoretic translation method for polymodal logics. Journal of Automated Reasoning, 15(3), 317–337.

    Article  Google Scholar 

  • Demri, S. & Orłowska, E. (1996). Logical analysis of demonic nondeterministic programs. Theoretical Computer Science, 166(1–2), 173–202.

    Article  Google Scholar 

  • Demri, S. & Orłowska, E. (2002). Incomplete Information: Structure, Inference, Complexity. Monographs in Theoretical Computer Science. An EATCS series. Berlin: Springer.

    Book  Google Scholar 

  • Dovier, A., Formisano, A., & Omodeo, E. (2006). Decidability results for sets with atoms. ACM Transactions on Computational Logic, 7(2), 269–301.

    Article  Google Scholar 

  • Düntsch, I. & Orłowska, E. (2001). Beyond modalities: Sufficiency and mixed algebras. In E. Orłowska & A. Szałas (Eds.), Relational Methods for Computer Science Applications (Vol. 65, pp. 263–285). Studies in Fuzziness and Soft Computing. Heidelberg: Springer-Physica Verlag.

    Chapter  Google Scholar 

  • Düntsch, I. & Orłowska, E. (2000). Logics of complementarity in information systems. Mathematical Logic Quarterly, 46(2), 267–288.

    Article  Google Scholar 

  • Düntsch, I., Orłowska, E., Radzikowska, A., & Vakarelov, D. (2005). Relational representation theorems for some lattice-based structures. Journal of Relational Methods in Computer Science, 1, 132–160.

    Google Scholar 

  • Formisano, A. & Omodeo, E. (2000). An equational re-engineering of set theories. In R. Caferra & G. Salzer (Eds.), Automated Deduction in Classical and Nonclassical Logics, Selected Papers (Vol. 1761, pp. 175–190). Lecture Notes in Computer Science. Berlin: Springer.

    Chapter  Google Scholar 

  • Formisano, A. & Nicolosi Asmundo, M. (2006). An efficient relational deductive system for propositional non-classical logics. Journal of Applied Non-Classical Logics, 16(3–4), 367–408.

    Article  Google Scholar 

  • Formisano, A. & Simeoni, M. (2001). An AGG application supporting visual reasoning. Electronic Notes in Theoretical Computer Science, 50(3), 302–309.

    Article  Google Scholar 

  • Formisano, A., Omodeo, E., & Temperini, M. (2000). Goals and benchmarks for automated map reasoning. Journal of Symbolic Computation, 29(2), 259–297.

    Article  Google Scholar 

  • Formisano, A., Omodeo, E., & Simeoni, M. (2001a). A graphical approach to relational reasoning. Electronic Notes in Theoretical Computer Science, 44(3), 153–174.

    Google Scholar 

  • Formisano, A., Omodeo, E., & Temperini, M. (2001b). Layered map reasoning: An experimental approach put to trial on sets. Electronic Notes in Theoretical Computer Science, 48, 1–28.

    Article  Google Scholar 

  • Formisano, A., Omodeo, E., & Temperini, M. (2001c). Instructing equational setreasoning with Otter. In R. Goré, A. Leitsch, & T. Nipkow (Eds.), Automated Reasoning, Proceedings of the 1st International Joint Conference, IJCAR 2001 (Vol. 2083, pp. 152–167). Lecture Notes in Computer Science. Berlin: Springer.

    Chapter  Google Scholar 

  • Formisano, A., Omodeo, E., & Policriti, A. (2004). Three-variable statements of set-pairing. Theoretical Computer Science, 322(1), 147–173.

    Article  Google Scholar 

  • Formisano, A., Omodeo, E., & Policriti, A. (2005). The axiom of elementary sets on the edge of Peircean expressibility. Journal of Symbolic Logic, 70(3), 953–968.

    Article  Google Scholar 

  • Formisano, A., Omodeo, E., & Orłowska, E. (2006). An environment for specifying properties of dyadic relations and reasoning about them II: Relational presentation of non-classical logics. In H. de Swart, E. Orłowska, M. Roubens, & G. Schmidt (Eds.), Theory and Applications of Relational Structures as Knowledge Instruments II: International Workshops of COST Action 274, TARSKI, 2002–2005, Selected Revised Papers (Vol. 4342, pp. 89–104). Lecture Notes in Artificial Intelligence. Berlin: Springer.

    Chapter  Google Scholar 

  • Golińska-Pilarek, J. & Orłowska, E. (2007). Tableaux and dual tableaux: Transformation of proofs. Studia Logica, 85(3), 283–302.

    Article  Google Scholar 

  • Golińska-Pilarek, J. & Orłowska, E. (2011). Dual tableau for monoidal triangular norm logic MTL. Fuzzy Sets and Systems, 162(1), 39–52.

    Article  Google Scholar 

  • Goranko, V. (1990). Modal definability in enriched languages. Notre Dame Journal of Formal Logic, 31(1), 81–105.

    Article  Google Scholar 

  • Humberstone, L. (1983). Inaccessible worlds. Notre Dame Journal of Formal Logic, 24(3), 346–352.

    Article  Google Scholar 

  • Järvinen, J. & Orłowska, E. (2006). Relational correspondences for lattices with operators. In W. MacCaull, M. Winter, & I. Düntsch (Eds.), Relational Methods in Computer Science: 8th International Seminar on Relational Methods in Computer Science, 3rd International Workshop on Applications of Kleene Algebra, and Workshop of COST Action 274: TARSKI, Selected Revised Papers (Vol. 3929, pp. 134–146). Lecture Notes in Computer Science. Berlin: Springer.

    Chapter  Google Scholar 

  • Jech, T. J. (1978). Set Theory. New York: Academic Press.

    Google Scholar 

  • Jifeng, H. & Hoare, C. A. R. (1986). Weakest prespecifications, Part I. Fundamenta Informaticae, 9, 51–84. Part II: ibidem, 9, 217–252.

    Google Scholar 

  • Konikowska, B., Morgan, C., & Orłowska, E. (1998). A relational formalisation of arbitrary finite-valued logics. Logic Journal of the IGPL, 6(5), 755–774.

    Article  Google Scholar 

  • Kwatinetz, M. K. (1981). Problems of Expressibility in Finite Languages. Doctoral dissertation, University of California, Berkeley.

    Google Scholar 

  • MacCaull, W. & Orłowska, E. (2002). Correspondence results for relational proof systems with applications to the Lambek calculus. Studia Logica, 71(3), 389–414.

    Article  Google Scholar 

  • MacCaull, W. & Orłowska, E. (2006). A logic of typed relations and its applications to relational databases. Journal of Logic and Computation, 16(6), 789–815.

    Article  Google Scholar 

  • Maddux, R. D. (2006). Relation Algebras. Studies in Logic and the Foundations of Mathematics. Amsterdam: Elsevier.

    Google Scholar 

  • Manin, Y. I. (2010). A Course in Mathematical Logic for Mathematicians (2nd ed.). Graduate Texts in Mathematics. Berlin: Springer.

    Book  Google Scholar 

  • McCune, W. W. (2003). OTTER 3.3 reference manual. CoRR, arXiv:cs.SC/0310056. Retrieved from http://arxiv.org/abs/cs.SC/0310056.

  • McCune, W. W. (2005–2010). Prover9 and Mace4. http://www.cs.unm.edu/~mccune/prover9/.

  • Omodeo, E., Orłowska, E., & Policriti, A. (2004). Rasiowa-Sikorski style relational elementary set theory. In R. Berghammer, B. Möller, & G. Struth (Eds.), Relational and Kleene-Algebraic Methods in Computer Science: 7th International Seminar on Relational Methods in Computer Science and 2nd International Workshop on Applications of Kleene Algebra, Bad Malente, Germany, May 12–17, 2003, Revised Selected Papers (Vol. 3051, pp. 215–226). Lecture Notes in Computer Science. Berlin: Springer.

    Google Scholar 

  • Omodeo, E., Policriti, A., & Tomescu, A. I. (2012). Infinity, in short. Journal of Logic and Computation, 22(6), 1391–1403.

    Article  Google Scholar 

  • Orłowska, E. (1988a). Proof system for weakest prespecification. Information Processing Letters, 27(6), 309–313.

    Article  Google Scholar 

  • Orłowska, E. (1988b). Relational interpretation of modal logics. In H. Andreka, D. Monk, & I. Németi (Eds.), Algebraic Logic. Colloquia Mathematica Societatis Janos Bolyai (Vol. 54, pp. 443–471). Amsterdam: North Holland.

    Google Scholar 

  • Orłowska, E. (1992). Relational proof systems for relevant logics. Journal of Symbolic Logic, 57(4), 1425–1440.

    Article  Google Scholar 

  • Orłowska, E. (1994). Relational semantics for non-classical logics: Formulas are relations. In J. Woleński (Ed.), Philosophical Logic in Poland (pp. 167–186). New York: Kluwer.

    Chapter  Google Scholar 

  • Orłowska, E. (1995). Temporal logics in a relational framework. In L. Bolc & A. Szałas (Eds.), Time and Logic: a Computational Approach (pp. 249–277). University College London Press.

    Google Scholar 

  • Orłowska, E. (1996). Relational proof systems for modal logics. In H. Wansing (Ed.), Proof Theory of Modal Logics (pp. 55–78). Berlin-New York: Kluwer Academic Publishers.

    Google Scholar 

  • Orłowska, E. (1997). Relational formalisation of nonclassical logics. In C. Brink, W. Kahl, & G. Schmidt (Eds.), Relational Methods in Computer Science (pp. 90–105). Wien/New York: Springer.

    Chapter  Google Scholar 

  • Orłowska, E. & Golińska-Pilarek, J. (2011). Dual Tableaux: Foundations, Methodology, Case Studies. Trends in Logic. Dordrecht-Heidelberg-London-New York: Springer.

    Book  Google Scholar 

  • Orłowska, E. & Vakarelov, D. (2005). Lattice-based modal algebras and modal logics. In P. Hájek, L. Valdés-Villanueva, & D. Westerståhl (Eds.), Logic, Methodology and Philosophy of Science: Proceedings of the 12th International Congress (pp. 147–170). Abstract in the volume of abstracts, 22–23. King’s College London Publications.

    Google Scholar 

  • Parlamento, F. & Policriti, A. (1991). Expressing infinity without foundation. Journal of Symbolic Logic, 56(4), 1230–1235.

    Article  Google Scholar 

  • Paulson, L. C. & Grąbczewski, K. (1996). Mechanizing set theory. Journal of Automated Reasoning, 17(3), 291–323.

    Google Scholar 

  • Rasiowa, H. & Sikorski, R. (1963). The Mathematics of Metamathematics. Warsaw: Polish Scientific Publishers.

    Google Scholar 

  • Schmidt, G. (2011). Relational Mathematics. Encyclopedia of Mathematics and its Applications. Cambridge: Cambridge University Press.

    Google Scholar 

  • Schmidt, G. & Ströhlein, T. (1993). Relations and Graphs, Discrete Mathematics for Computer Scientists. EATCS Monographs on Theoretical Computer Science. Berlin: Springer.

    Google Scholar 

  • Tarski, A. (1953a). A formalization of set theory without variables. Journal of Symbolic Logic, 18, 189 (Abstracts of the 15th meeting of the Association for Symbolic Logic).

    Google Scholar 

  • Tarski, A. (1953b). Some metalogical results concerning the calculus of relations. Journal of Symbolic Logic, 18, 188–189 (Abstracts of the 15th meeting of the Association for Symbolic Logic).

    Google Scholar 

  • Tarski, A. & Givant, S. (1987). Formalization of Set Theory Without Variables. Colloquium Publications. Providence: American Mathematical Society.

    Google Scholar 

  • van Benthem, J., D’Agostino, G., Montanari, A., & Policriti, A. (1996). Modal deduction in second-order logic and set theory-I. Journal of Logic and Computation, 7(2), 251–265.

    Article  Google Scholar 

  • van Benthem, J., D’Agostino, G., Montanari, A., & Policriti, A. (1998). Modal deduction in second-order logic and set theory-II. Studia Logica, 60(2), 387–420.

    Article  Google Scholar 

  • Zermelo, E. (1977). Untersuchungen über die Grundlagen der Mengenlehre I. In J. Van Heijenoort (Ed.), From Frege to Gödel – A Source Book in Mathematical Logic, 1879–1931 (3rd edn., pp. 199–215). Cambridge: Harvard University Press.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for careful reading and providing invaluable advice: one of them even produced a detailed sketch of the proof of Lemma 6.3 and showed that it must rely on (E). Thanks are also due to Giovanna D’Agostino for pleasant discussions, concerning in particular Sect. 6.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Formisano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Formisano, A., Omodeo, E.G., Policriti, A. (2018). Reasoning on Relations, Modalities, and Sets. In: Golińska-Pilarek, J., Zawidzki, M. (eds) Ewa Orłowska on Relational Methods in Logic and Computer Science. Outstanding Contributions to Logic, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-97879-6_6

Download citation

Publish with us

Policies and ethics