Skip to main content

New Symmetries and Fractal-Like Structures in the Genetic Coding System

  • Conference paper
  • First Online:
Advances in Computer Science for Engineering and Education (ICCSEEA 2018)

Abstract

The achievements of molecular genetics and bioinformatics lead to significant changes in technological, medical and many other areas of our lives. This article is devoted to new results of study of structural organization of genetic information in living organisms. A new class of symmetries and fractal-like patterns in long DNA-texts is represented in addition to two Chargaff’s parity rules, which played an important role in development of genetics and bioinformatics. Our results provide new approaches for modeling genetic informatics from viewpoints of quantum informatics and theory of dynamic chaos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Petoukhov, S.V.: Matrix Genetics, Algebras of the Genetic Code, Noise Immunity. RCD, Moscow, Russia (2008). (in Russian)

    Google Scholar 

  2. Petoukhov, S.V., He, M.: Symmetrical Analysis Techniques for Genetic Systems and Bioinformatics: Advanced Patterns and Applications. IGI Global, Hershey (2010)

    Book  Google Scholar 

  3. Petoukhov, S., Petukhova, E., Hazina, L., Stepanyan, I., Svirin, V., Silova, T.: The genetic coding, united-hypercomplex numbers and artificial intelligence. In: Hu, Z., Petoukhov, S., He, M. (eds.) Advances in Artificial Systems for Medicine and Education. AIMEE 2017. Advances in Intelligent Systems and Computing, vol. 658. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67349-3_1. Print ISBN 978-3-319-67348-6, Online ISBN 978-3-319-67349-3. https://springerlink.bibliotecabuap.elogim.com/search?query=978-3-319-67348-6. Accessed 20 Aug 2017

    Google Scholar 

  4. Petoukhov, S.V.: The rules of long DNA-sequences and tetra-groups of oligonucleotides (2017). (https://arxiv.org/abs/1709.04943)

  5. Hu, Z.B., Petoukhov, S.V., Petukhova, E.S.: I-Ching, dyadic groups of binary numbers and the geno-logic coding in living bodies. Progress in Biophysics and Molecular Biology (2017, in press). http://authors.elsevier.com/sd/article/S0079610717300949. Accessed 18 Sept 2017

    Article  Google Scholar 

  6. Hu, Z.B., Petoukhov, S.V.: Generalized crystallography, the genetic system and biochemical esthetics. Struct. Chem. 28(1), 239–247 (2017). https://doi.org/10.1007/s11224-016-0880-0. http://springerlink.bibliotecabuap.elogim.com/journal/11224/28/1/page/2

  7. Fickett, J., Burks, C.: Development of a database for nucleotide sequences. In: Waterman, M.S. (ed.) Mathematical Methods in DNA Sequences, pp. 1–34. CRC Press, Florida (1989)

    Google Scholar 

  8. Chargaff, E.: Preface to a grammar of biology: a hundred years of nucleic acid research. Science 172, 637–642 (1971)

    Article  Google Scholar 

  9. Chargaff, E.: Structure and function of nucleic acids as cell constituents. Fed. Proc. 10, 654–659 (1951)

    Google Scholar 

  10. Albrecht-Buehler, G.: Asymptotically increasing compliance of genomes with Chargaff’s second parity rules through inversions and inverted transpositions. Proc. Nat. Acad. Sci. USA 103(47), 17828–17833 (2006)

    Article  Google Scholar 

  11. Baisnee, P.-F., Hampson, S., Baldi, P.: Why are complementary DNA strands symmetric? Bioinformatics 18(8), 1021–1033 (2002)

    Article  Google Scholar 

  12. Bell, S.J., Forsdyke, D.R.: Deviations from Chargaff’s second parity rule correlate with direction of transcription. J. Theor. Biol. 197, 63–76 (1999)

    Article  Google Scholar 

  13. Chargaff, E.: A fever of reason. Ann. Rev. Biochem. 44, 1–20 (1975)

    Article  Google Scholar 

  14. Dong, Q., Cuticchia, A.J.: Compositional symmetries in complete genomes. Bioinformatics 17, 557–559 (2001)

    Article  Google Scholar 

  15. Forsdyke, D.R.: A stem-loop “kissing” model for the initiation of recombination and the origin of introns. Mol. Biol. Evol. 12, 949–958 (1995)

    Google Scholar 

  16. Forsdyke, D.R.: Symmetry observations in long nucleotide sequences: a commentary on the discovery of Qi and Cuticchia. Bioinf. Lett. 18(1), 215–217 (2002)

    Article  MathSciNet  Google Scholar 

  17. Forsdyke, D.R.: Evolutionary Bioinformatics. Springer, New York (2006)

    Book  Google Scholar 

  18. Forsdyke, D.R., Bell, S.J.: Purine-loading, stem-loops, and Chargaff’s second parity rule. Appl. Bioinf. 3, 3–8 (2004)

    Article  Google Scholar 

  19. Mitchell, D., Bridge, R.: A test of Chargaff’s second rule. BBRC 340, 90–94 (2006)

    Article  Google Scholar 

  20. Okamura, K., Wei, J., Scherer, S.: Evolutionary implications of inversions that have caused intra-strand parity in DNA. BMC Genomics 8, 160–166 (2007). http://www.gutenberg.org/files/39713/39713-h/39713-h.htm#Page_264

    Article  Google Scholar 

  21. Perez, J.-C.: The “3 genomic numbers” discovery: how our genome single-stranded DNA sequence is “self-designed” as a numerical whole. Appl. Math. 4, 37–53 (2013). http://dx.doi.org/10.4236/am.2013.410A2004

    Article  Google Scholar 

  22. Prabhu, V.V.: Symmetry observation in long nucleotide sequences. Nucleic Acids Res. 21, 2797–2800 (1993)

    Article  Google Scholar 

  23. Rapoport, A.E., Trifonov, E.N.: Compensatory nature of Chargaff’s second parity rule. J. Biomol. Struct. Dyn. 1–13 (2012). https://doi.org/10.1080/07391102.2012.736757

  24. Sueoka, N.: Intrastrand parity rules of DNA base composition and usage biases of synonymous codons. J. Mol. Evol. 40, 318–325 (1995)

    Article  Google Scholar 

  25. Yamagishi, M., Herai, R.: Chargaff’s “Grammar of Biology”: New Fractal-like Rules. http://128.84.158.119/abs/1112.1528v1 (2011)

  26. Petoukhov, S.V., Svirin, V.I.: Fractal genetic nets and symmetry principles in long nucleotide 
sequences. Symmetry Cult. Sci. 23(3–4), 303–322 (2012). http://petoukhov.com/PETOUKHOV_SVIRIN_FGN.pdf

  27. Jeffrey, H.J.: Chaos game representation of gene structure. Nucleic Acids Res. 18(8), 2163–2170 (1990)

    Article  Google Scholar 

  28. Peng, C.K., Buldyrev, S.V., Goldberger, A.L., Havlin, S., Sclortino, F., Simons, M., Stanley, H.E.: Long-range correlations in nucleotide sequences. Nature 356, 168–170 (1992)

    Article  Google Scholar 

  29. Peng, C.K., Buldyrev, S.V., Goldberger, A.L., Havlin, S., Sclortino, F., Simons, M., Stanley, H.E.: Fractal landscape analysis of DNA walks. Phys. A 191(1–4), 25–29 (1992)

    Article  Google Scholar 

  30. Pellionis, A.J.: The principle of recursive genome function. Cerebellum 7, 348–359 (2008). https://doi.org/10.1007/s12311-008-0035-y

    Article  Google Scholar 

  31. Pellionisz, A.J., Graham, R., Pellionisz, P.A. Perez, J.C.: Recursive genome function of the cerebellum: geometric unification of neuroscience and genomics, In: Manto, M., Gruol, D.L., Schmahmann, J.D., Koibuchi, N., Rossi, F. (eds.) Handbook of the Cerebellum and Cerebellar Disorders, pp. 1381–1423 (2012)

    Chapter  Google Scholar 

  32. Perez, J.C.: Codon populations in single-stranded whole human genome DNA are fractal and fine-tuned by the Golden Ratio 1.618. Interdiscip. Sci. Comput. Life Sci. 2, 228–240 (2010). https://doi.org/10.1007/s12539-010-0022-0

    Article  Google Scholar 

  33. Lieberman-Aiden, E., van Berkum, N.L., Williams, L., Imakaev, M., Ragoszy, T., Telling, A., Lajoie, B.R., Sabo, P.J., Dorschner, M.O., Sandstrom, R., Bernstein, B., Bender, M.A., Groudine, M., Gnirke, A., Stamatoyannopoulos, J., Mirny, L.A., Lander, E.S., Dekker, J.: Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950), 289–293 (2009). https://doi.org/10.1126/science.1181369

    Article  Google Scholar 

  34. Baish, J.W., Jain, R.K.: Fractals and cancer. Can. Res. 60, 3683–3688 (2000)

    Google Scholar 

  35. Bizzarri, M., Giuliani, A., Cucina, A., Anselmi, F.D., Soto, A.M., Sonnenschein, C.: Fractal analysis in a systems biology approach to cancer. Semin. Cancer Biol. 21(3), 175–182 (2011). https://doi.org/10.1016/j.semcancer.2011.04.002

    Article  Google Scholar 

  36. Lennon, F.E., Cianci, G.C., Cipriani, N.A., Hensing, T.A., Zhang, H.J., Chen, C.-T., Murgu, S.D., Vokes, E.E., Vannier, M.W., Salgia, R.: Lung cancer - a fractal viewpoint. Nat. Rev. Clin. Oncol. 12(11), 664–675 (2015) https://doi.org/10.1038/nrclinonc.2015.108

  37. Dokukin, M.E., Guz, N.V., Woodworth, C.D., Sokolov, I.: Emergence of fractal geometry on the surface of human cervical epithelial cells during progression towards cancer. New J. Phys. 17(3), 033019 (2015)

    Article  Google Scholar 

  38. Perez, J.C.: Sapiens mitochondrial DNA genome circular long range numerical meta structures are highly correlated with cancers and genetic diseases mtDNA mutations. J. Cancer Sci. Ther. 9, 6 (2017). https://doi.org/10.4172/1948-5956.1000469

  39. Abo-Zahhad, M., Ahmed, S.M., Abd-Elrahman, S.A.: Genomic analysis and classification of exon and intron sequences using DNA numerical mapping techniques. Int. J. Inf. Technol. Comput. Sci. (IJITCS) 4(8), 22–36 (2012)

    Article  Google Scholar 

  40. Abo-Zahhad, M., Ahmed, S.M., Abd-Elrahman, S.A.: A novel circular mapping technique for spectral classification of exons and introns in human DNA sequences. Int. J. Inf. Technol. Comput. Sci. (IJITCS) 6(4), 19–29 (2014). https://doi.org/10.5815/ijitcs.2014.04.02

    Article  Google Scholar 

  41. Meher, J.K., Panigrahi, M.R., Dash, G.N., Meher, P.K.: Wavelet based lossless DNA sequence compression for faster detection of eukaryotic protein coding regions. Int. J. Image Graph. Sig. Process. (IJIGSP) 4(7), 47–53 (2012). https://doi.org/10.5815/ijigsp.2012.07.05

    Article  Google Scholar 

  42. Srivastava, P.C., Agrawal, A., Mishra, K.N., Ojha, P.K., Garg, R.: Fingerprints, Iris and DNA features based multimodal systems: a review. Int. J. Inf. Technol. Comput. Sci. (IJITCS) 5(2), 88–111 (2013). https://doi.org/10.5815/ijitcs.2013.02.10

    Article  Google Scholar 

  43. Mousa, H.M.: DNA-genetic encryption technique. Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 8(7), 1–9 (2016). https://doi.org/10.5815/ijcnis.2016.07.01

    Article  Google Scholar 

  44. Hossein, S.M., Roy, S.: A compression & encryption algorithm on DNA sequences using dynamic look up table and modified Huffman techniques. Int. J. Inf. Technol. Comput. Sci. (IJITCS) 5(10), 39–61 (2013). https://doi.org/10.5815/ijitcs.2013.10.05

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Petoukhov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Petoukhov, S., Petukhova, E., Svirin, V. (2019). New Symmetries and Fractal-Like Structures in the Genetic Coding System. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds) Advances in Computer Science for Engineering and Education. ICCSEEA 2018. Advances in Intelligent Systems and Computing, vol 754. Springer, Cham. https://doi.org/10.1007/978-3-319-91008-6_59

Download citation

Publish with us

Policies and ethics