Skip to main content

Influence of the Deep Spherical Dimple on the Pressure Field Under the Turbulent Boundary Layer

  • Conference paper
  • First Online:
Advances in Computer Science for Engineering and Education (ICCSEEA 2018)

Abstract

The influence of a local dimple in the form of a deep spherical cavity on the pressure field inside the dimple and its vicinity for the turbulent flow regime is experimentally determined. Specific features of the vortex formation inside the dimple are established and the influences of vortex structures that are ejected outward from the spherical dimple on the structure of the turbulent boundary layer are shown. The antiphase oscillations of the wall pressure fluctuation field occur in the halves of the dimple separated by a longitudinal axial plane when the vortex flow “switches” from one side of the dimple to another. The spectral components of the wall pressure fluctuations on the streamlined surface of the spherical dimple have discrete components corresponding to the frequencies of the “switching” of the vortex formation inside the dimple (St ≈ 0.003), the frequencies of the vortex ejections from the dimple (St ≈ 0.05) and the frequencies of the self-oscillations of the shear layer (St ≈ 0.4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Khalatov, A.A.: Heat transfer and fluid mechanics over surface indentations (dimples). National Academy of Sciences of Ukraine, Institute of Engineering Thermophysics, Kyiv (2005)

    Google Scholar 

  2. Khadivi, T., Savory, E.: Effect of yaw angle on the flow structure of low aspect ratio elliptical cavities. J. Aerosp. Eng. 232(4), 04017002 (2017)

    Article  Google Scholar 

  3. Voskoboinick, V., Kornev, N., Turnow, J.: Study of near wall coherent flow structures on dimpled surfaces using unsteady pressure measurements. Flow Turbul. Combust 90(4), 709–722 (2013)

    Article  Google Scholar 

  4. Mori, Y., Kobayashi, T., Tahara, K.: Sorting of acrylonitrile-butadiene-styrene and polystyrene plastics by microwave cavity resonance. Int. J. Wireless Microwave Technol. (IJWMT) 6(2), 1–9 (2016). https://doi.org/10.5815/ijwmt.2016.02.01

    Article  Google Scholar 

  5. Sharma, S., Kaur, D.: Measurements of dielectric parameters of aviation fuel at X-band frequencies using cavity perturbation technique. Int. J. Wireless Microwave Technol. (IJWMT) 6(6), 48–55 (2016). https://doi.org/10.5815/ijwmt.2016.06.05

    Article  Google Scholar 

  6. Voskoboinick, V.A., Makarenkov, A.P.: Spectral characteristics of the hydrodynamical noise in a longitudinal flow around a flexible cylinder. Intern. J. Fluid Mech. 31(1), 87–100 (2004)

    Article  Google Scholar 

  7. Voskoboinick, V.A., Grinchenko, V.T., Makarenkov, A.P.: Pseudo-sound behind an obstacle on a cylinder in axial flow. Intern. J. Fluid Mech. 32(4), 488–510 (2005)

    Article  Google Scholar 

  8. Turnow, J., Kornev, N., Isaev, S., Hassel, E.: Vortex mechanism of heat transfer enhancement in a channel with spherical and oval dimples. Heat Mass Transf. 47(3), 301–313 (2011)

    Article  Google Scholar 

  9. Terekhov, V.I., Kalinina, S.V., Mshvidobadze, YuM: Experimental research of flow development in channal with halfspherical cavity. Sib. Phys-Tekhn. J. 1, 77–86 (1992). (in Russian)

    Google Scholar 

  10. Voskoboinick, V.A.: Pressure distribution on streamlined surface with spherical dimple. Water Transp. 18(3), 90–96 (2014). (in Russian)

    Google Scholar 

  11. Voskoboinick, A.V., Voskoboinick, V.A., Isaev, S.A., Zhdanov, V.L., Kornev, N.V., Turnow, J.: Vortex flow bifurcation inside the spherical dimple in a narrow channel. Appl. Hydromech. 13(4), 17–27 (2011). (in Russian)

    Google Scholar 

  12. Bull, M.K.: Wall-pressure fluctuations beneath turbulent boundary layers: some reflections on forty years of research. J. Sound Vibr. 190(3), 299–315 (1996)

    Article  Google Scholar 

  13. Goshvarpour, A., Shamsi, M., Goshvarpour, A.: Spectral and time based assessment of meditative heart rate signals. Int. J. Image Graph. Signal Process. (IJIGSP) 5(4), 1–10 (2013). https://doi.org/10.5815/ijigsp.2013.04.01

    Article  Google Scholar 

  14. Bendat, J.S., Piersol, A.G.: Random Data: Analysis and Measurement Procedures. Willey, New York (1986)

    MATH  Google Scholar 

  15. Elnashar, A.I., El-Zoghdy, S.F.: An Algorithm for static tracing of message passing interface programs using data flow analysis. Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 7(1), 1–8 (2015). https://doi.org/10.5815/ijcnis.2015.01.01

    Google Scholar 

  16. Tsuji, Y., Marusic, I., Johansson, A.V.: Amplitude modulation of pressure in turbulent boundary layer. Int. J. Heat Fluid Flow 61, 2–11 (2016)

    Article  Google Scholar 

  17. Blake, W.K.: Mechanics of Flow-Induced Sound and Vibration, vol. 2. Academic Press, New York (1986)

    MATH  Google Scholar 

  18. Doisy, Y.: Modelling wall pressure fluctuations under a turbulent boundary layer. J. Sound Vib. 400, 178–200 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Voskoboinick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Voskoboinick, V.A., Turick, V.N., Voskoboinyk, O.A., Voskoboinick, A.V., Tereshchenko, I.A. (2019). Influence of the Deep Spherical Dimple on the Pressure Field Under the Turbulent Boundary Layer. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds) Advances in Computer Science for Engineering and Education. ICCSEEA 2018. Advances in Intelligent Systems and Computing, vol 754. Springer, Cham. https://doi.org/10.1007/978-3-319-91008-6_3

Download citation

Publish with us

Policies and ethics