Skip to main content

Segerberg Squares of Modal Logics and Theories of Relation Algebras

  • Chapter
  • First Online:
Larisa Maksimova on Implication, Interpolation, and Definability

Part of the book series: Outstanding Contributions to Logic ((OCTR,volume 15))

Abstract

The paper studies two-dimensional modal logics with additional connectives (so-called Segerberg squares) and can be regarded as a continuation of Shehtman (Russian Mathematical Surveys, 67(4):721–778, 2012). It gives a new simpler proof of the finite model property of minimal Segerberg squares using bisimulation games. It proves the square finite model property for Segerberg squares of polymodal \(\mathbf{T}\) and \(\mathbf{D}\). It also constructs a faithful embedding of Segerberg squares in the equational theory of relation algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The choice of 8, 9 is arbitrary; they are used only as markers for two halves of the disjoint union.

  2. 2.

    In this case we say that \(\varGamma \) is controlled by \(\sigma \).

  3. 3.

    In Shehtman (2012) there is a misprint in the definition of \(\Theta \).

References

  • Andréka, H., Givant, V., & Németi, I. (1997). Decision problems for equational theories of relation algebras (Vol. 126), Memoirs of the American Mathematical Society. Providence: American Mathematical Society.

    Google Scholar 

  • Gabbay, D., & Shehtman, V. (1998). Products of modal logics, part 1. Logic Journal of the IGPL, 6, 73–146.

    Article  Google Scholar 

  • Gabbay, D., & Shehtman, V. (2000). Products of modal logics, part 2: Relativised quantifiers in classical logic. Logic Journal of the IGPL, 8, 165–210.

    Article  Google Scholar 

  • Gabbay, D., & Shehtman, V. (2002). Products of modal logics, part 3: Products of modal and temporal logics. Studia Logica, 72, 157–183.

    Google Scholar 

  • Gabbay, D. M., Kurucz, A., Wolter, F., & Zakharyaschev, M. (2003). Many-dimensional modal logics: Theory and applications. Amsterdam: Elsevier.

    Google Scholar 

  • Goranko, V., & Otto, M. (2007). Model theory of modal logic. In P. Blackburn, J. Van Benthem, & F. Wolter (Eds.), Handbook of modal logic (pp. 249–329). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Hirsch, R., & Hodkinson, I. (2002). Relation algebras by games. Amsterdam: Elsevier.

    Google Scholar 

  • Maksimova, L. L. (1975). Modal logics of finite slices. Algebra and logic, 14(3), 304–319.

    Google Scholar 

  • Maksimova, L. L. (1981). O lokalno konechnykh mnogoobraziyakh psevdobulevykh algebr. In 6th All-Union Algebraical Conference (abstracts), No. 1, Leningrad, pp. 99–100, [On locally finite varieties of pseudoboolean algebras].

    Google Scholar 

  • Malcev, A. I. (1973). Algebraic systems. Berlin: Springer.

    Book  Google Scholar 

  • Monk, D. (1964). On representable relation algebras. Michigan Mathematical Journal, 11, 207–210.

    Article  Google Scholar 

  • Segerberg, K. (1967). On the logic of tomorrow. Theoria, 33, 45–52.

    Article  Google Scholar 

  • Segerberg, K. (1973). Two-dimensional modal logic. Journal of Philosophical Logic, 2, 77–96.

    Article  Google Scholar 

  • Shehtman, V. B. (1978). Two-dimensional modal logics. Mathematical Notes, 23, 417–424.

    Article  Google Scholar 

  • Shehtman, V. (2011). O kvadratakh modalnykh logik s dopolnitelnymi svyazkami. Works of Steklov Mathematical Institute (Trudy), 274, 343–351. [On squares of modal logics with additional connectives].

    Google Scholar 

  • Shehtman, V. B. (2012). Squares of modal logics with additional connectives. Russian Mathematical Surveys, 67(4), 721–778.

    Article  Google Scholar 

  • Shehtman, V. B. (2018). Bisimulation games in modal and intuitionistic logic, in preparation.

    Google Scholar 

  • Tarski, A. (1941). On the calculus of relations. Journal of Symbolic Logic, 6, 73–89.

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank the anonymous referee for useful comments on the first version of the manuscript.

The research presented in this paper was done in part within the framework of the Basic Research Program at National Research University Higher School of Economics and was partially supported within the framework of a subsidy by the Russian Academic Excellence Project 5-100. It was also supported by the RFBR project 16-01-00615 and by the Russian president project NSh-9091.2016.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Shehtman .

Editor information

Editors and Affiliations

Appendix

Appendix

In this part we prove a simple syntactic fact from modal logic and recall the proof of some standard identities in relation algebras (for the readers who are less familiar with the subject).

Proposition 1

\(\mathbf{K}+\Diamond ^2p\,{\leftrightarrow }\, p\vdash \square p\,{\leftrightarrow }\,\Diamond p\), and thus

\(\mathbf{K}+\Diamond ^2p\,{\leftrightarrow }\, p\vdash \lnot \Diamond p\,{\leftrightarrow }\,\Diamond \lnot p\).

Proof

In this logic we have \(\Diamond ^2\top \,{\leftrightarrow }\, \top \), i.e., \(\Diamond ^2\top \). So it contains \(\mathbf{D}\) and proves \(\square p\rightarrow \Diamond p\).

For the converse we first obtain \(\square ^2p\,{\leftrightarrow }\, p\) (by substituting \(\lnot p\) for p in the axiom). So \(p\rightarrow \square ^2p\), and by substitution, \(\Diamond p\rightarrow \square ^2\Diamond p\). From \(\square p\rightarrow \Diamond p\) by substitution and monotonicity we have \(\square ^2\Diamond p\rightarrow \square \Diamond ^2 p\). Thus \(\Diamond p\rightarrow \square \Diamond ^2 p\), and by applying the axiom, \(\Diamond p\rightarrow \square p\). \(\boxtimes \)

Proposition 2

The following identities and quasiidentities hold in \(\mathbf{R}{} \mathbf{A}\):

  1. (1)

    \(x\leqslant y\Rightarrow x^{-1}\leqslant y^{-1}\),

  2. (2)

    \(\mathbf{1}^{-1}=\mathbf{1}\),

  3. (3)

    \(z\circ (x\cup y)=(z\circ x)\cup (z\circ y)\),

  4. (4)

    \({\delta }^{-1}={\delta }\),

  5. (5)

    \({\delta }\circ x=x\),

  6. (6)

    \(x\leqslant y\Rightarrow z\circ x\leqslant z\circ y\),

  7. (7)

    \(x\circ \mathbf{0}=\mathbf{0}\),

  8. (8)

    \(x\cap (\mathbf{1}\circ y)\leqslant x\circ y^{-1}\circ y\),

  9. (9)

    \(x\leqslant y\Rightarrow x\circ z\leqslant y\circ z\),

  10. (10)

    \(x\leqslant {\delta }\Rightarrow x=x^{-1}\).

Proof

(1) \(x\leqslant y\) implies \(y=x\cup y\), and so \(y^{-1}=(x\cup y)^{-1}=x^{-1}\cup y^{-1}\) by (RA2). Hence \(x^{-1}\leqslant y^{-1}\).

(2) \(\mathbf{1}^{-1}\leqslant \mathbf{1}\) implies \((\mathbf{1}^{-1})^{-1}\leqslant \mathbf{1}^{-1}\) by (1), and so \(\mathbf{1}\leqslant \mathbf{1}^{-1}\) by (RA5).

(3) From (RA1), (RA2), (RA6) we have:

$$ z^{-1}\circ (x^{-1}\cup y^{-1})= (z^{-1}\circ x^{-1})\cup (z^{-1}\circ y^{-1}). $$

Now replace xyz by their converses and use (RA5).

(4) \({\delta }^{-1}\circ {\delta }={\delta }^{-1}\) by (RA4); hence

$$({\delta }^{-1}\circ {\delta })^{-1}=({\delta }^{-1})^{-1}, $$

and so

$${\delta }^{-1}\circ {\delta }={\delta }, $$

by (RA6) and (RA5). Thus \({\delta }^{-1}={\delta }\).

(5) (RA5) and (RA6) imply \({\delta }^{-1}\circ x^{-1}=x^{-1}\). Then replace x by \(x^{-1}\) and use (4) and (RA5).

(6) Replace y by \(x\cup y\) and apply (3).

(7) Obviously,

$$ \mathbf{0}\leqslant -(x\circ \mathbf{1}). $$

Hence by (6) and (RA7)

$$ x^{-1}\circ \mathbf{0}\leqslant x^{-1}\circ (-(x\circ \mathbf{1}))\leqslant -\mathbf{1}=\mathbf{0}. $$

Now replace x by \(x^{-1}\).

(8) As mentioned in the proof of Lemma 12.8.6, this is a translation of the \(\mathbf{K.t}\)-theorem

$$ p\wedge \blacklozenge ^{-1}\top \rightarrow \blacklozenge ^{-1}\blacklozenge p. $$

To prove the latter, we first obtain

$$ p\wedge \blacklozenge ^{-1}\top \rightarrow \blacksquare ^{-1}\blacklozenge p\wedge \blacklozenge ^{-1}\top $$

from a temporal axiom, and then apply the \(\mathbf{K}\)-theorem

$$ \blacksquare ^{-1}q\wedge \blacklozenge ^{-1}\top \rightarrow \blacklozenge ^{-1}q. $$

(9) Similar to (6)

(10) Apply (5), (9) and (8) for \(y={\delta }\):

$$ x=x\cap ({\delta }\circ x)\leqslant x\cap (\varvec{1}\circ x)\leqslant x\circ x^{-1}\circ x. $$

So for \(x\leqslant {\delta }\) we have by monotonicity and (6), (9)

$$ x\leqslant {\delta }\circ x^{-1}\circ {\delta }\leqslant x^{-1}. $$

Hence by taking the converses we obtain

$$ x^{-1}\leqslant x, $$

and thus \(x^{-1}= x\). \(\boxtimes \)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shehtman, V. (2018). Segerberg Squares of Modal Logics and Theories of Relation Algebras. In: Odintsov, S. (eds) Larisa Maksimova on Implication, Interpolation, and Definability. Outstanding Contributions to Logic, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-69917-2_12

Download citation

Publish with us

Policies and ethics