Skip to main content

Landslide Tsunamis: Recent Findings and Research Directions

  • Chapter
Landslide Tsunamis: Recent Findings and Research Directions

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

Underwater landslides can trigger local tsunamis with high runup, endangering human life and devastating coastal cities, offshore structures, communication cables, and port facilities. Unfortunately, hazards from underwater landslides are not well understood and the extents of their potential damage remain difficult to ascertain at present. There is immediate need for multidisciplinary research to improve our understanding and plan countermeasures for mitigating their hazards. Conceived in the wake of the Papua New Guinea earthquake landslide and tsunami of 1998, this volume summarizes the state-of-the-art knowledge on underwater landslides and their potential to generate tsunamis from the multidisciplinary perspectives of observational and engineering seismology, geotechnical engineering, marine geology, and hydrodynamics. These various fields of engineering and science offer new synergetic opportunities to examine landslide tsunamis. This paper makes recommendations on future research directions, and will hopefully advance scientists’ and engineers’ understanding of these natural hazards and assist planners in mitigating their risks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ambraseys, N. N. (1960), The Seismic Sea Wave of July 9,1956 in the Greek Archipelago, J. Geophys. Res. 65, 1257–1265.

    Article  Google Scholar 

  • Ben-Menahem, A. and Rosenman, M. (1972), Amplitude Patterns of Tsunami Waves from Submarine Earthquakes, J. Geophys. Res. 77, 3097–3128.

    Article  Google Scholar 

  • Bjerrum, L. (1971), Subaqueous Slope Failures in Norwegian Fjords, Nor. Geotech. Inst. Bull. 88, 1–8.

    Google Scholar 

  • Bugge, T., Belderson, R. H., and Kenyon, N. H. (1987), The Storegga Slide, Phil. Trans. R. Soc. London A 325, 357–388.

    Article  Google Scholar 

  • Caminade, J. P., Charlie, D., Kanoglu, U., Koshimura, S., Matsutomi, H., Moore, A., Ruscher, C., Synolakis, C. E., and Takahashi, T. (2001), Vanuatu Earthquake and Tsunami Cause Much Damage, Few Casualties, EOS, Trans. Am. Geophys. Union 81(52), 641, 646–647.

    Google Scholar 

  • Caplan-Auerbach, J., Fox, C. G., and Duennebier, F. K. (2001), Hydroacoustic Detection of Submarine Landslides on Kilauea Volcano, Geophys. Res. Lett. 28, 1811–1813.

    Article  Google Scholar 

  • Davies, H. L. (1998), The Sissano Tsunami, Port Moresby: University of Papua New Guinea.

    Google Scholar 

  • Davies, H. L., Davies J. M., Perembo, R. C. B., and Lus, W. Y. (2003), The Atape 1998 Tsunami: Reconstructing the Event from Interviews and Field Mapping, Pure Appl. Geophys. this volume.

    Google Scholar 

  • Dawson, A. G., Long, D., and Smith, D. E. (1988), The Storegga Slides: Evidence from Eastern Scotland for a Possible Tsunami, Marine Geology 82, 271–276.

    Article  Google Scholar 

  • Dengler, L. and Preuss, J. (2003), Mitigation Lessons from the July 17,1998 Papua New Guinea Tsunami, Pure Appl. Geophys. 160, 2001–2031.

    Article  Google Scholar 

  • Eissler, H. K. and Kanamori, H. (1987), A Single force Model for the 1975 Kalapana, Hawaii Earthquake, J. Geophys. Res. 92, 4827–4836.

    Article  Google Scholar 

  • Finn, W. D. L. (2003), Landslide Generated Tsunamis: Geotechnical Considerations, Pure Appl. Geophys. 160, 1879–1894

    Article  Google Scholar 

  • Fukao, Y. (1979), Tsunami Earthquake and Subduction Processes near Deep Sea Trenches, J. Geophys. Res. 84, 2303–2314.

    Article  Google Scholar 

  • Geist, E. L. (2000), Origin of the 17 July 1998 Papua New Guinea Tsunami: Earthquake or Landslide? Seismol. Res. Lett. 71, 344–351.

    Article  Google Scholar 

  • Gelfenbaum, G. and Jaffe, B. (2003), Erosion and Sedimentation from the 17 July 1998 Papua New Guinea Tsunami, Pure Appl. Geophys. 160, 1969–1999.

    Article  Google Scholar 

  • Guibourg, S., Heinrich, P., and Roche, R. (1997), Numerical Modeling of the 1995 Chilean Tsunami; Impact on French Polynesia, Geophys. Res. Lett. 24, 775–778.

    Article  Google Scholar 

  • Gutenberg, B. (1939), Tsunamis and Earthquakes, Bull. Seismol. Soc. Am. 29, 517–526.

    Google Scholar 

  • Heinrich, P. (1992), Non-Linear Water Waves Generated by Submarine and Aerial Landslide, J. Wtrwy Port Coast. Ocean Engng. 118, 249–266.

    Article  Google Scholar 

  • Heinrich, P., Piatanesi, A., Okal, E. A., and Hebert, H. (2000), Near-Field Modeling of the July 17, 1998 Tsunami in Papua New Guinea,Geophys. Res. Lett. 27, 3037–3040.

    Article  Google Scholar 

  • Hurukawa, N., Tsuji, Y., and Waluyo, B. (2003), The 1998 Papua New Guinea Earthquake and its Fault Plane Estimated from Relocated Aftershocks, Pure Appl. Geophys. 160, 1829–1841.

    Article  Google Scholar 

  • Imamura, F. and Hashi, K. (2002), Re-examination of the Tsunami Source of the 1998 Papua New Guinea Earthquake Tsunami, Pure Appl. Geophys. 160, 2071–2086.

    Article  Google Scholar 

  • Imamura, F., Gica, E., Takahashi, T., and Shuto, N. (1995), Numerical Simulation of the 1992 Flores Tsunami: Interpretation of Tsunami Phenomena in Northeastern Flores Island and Damage at Babi Island, Pure Appl. Geophys. 144, 555–568.

    Article  Google Scholar 

  • Imamura, F., Synolakis, C. E., Titov, V., and Lee, S. (1995), Field Survey of the 1994 Mindoro Island, Philippines Tsunami, Pure Appl. Geophys. 144, 875–890.

    Article  Google Scholar 

  • Jiang, L. and Leblond, P. H. (1992), The Coupling of a Submarine Slide and the Surface Wave which it Generates, J. Geophys. Res. 97, 12,731–12,744.

    Article  Google Scholar 

  • Kanamori, H. and Cipar, J. J. (1974), Focal Process of the Great Chilean Earthquake, May 22, 1960, Phys. Earth Planet. Inter. 9, 128–136.

    Article  Google Scholar 

  • Kanamori, H. (1970), The Alaska Earthquake of 1964: Radiation of Long-Period Surface Waves and Source Mechanism, J. Geophys. Res. 75, 5029–5040.

    Article  Google Scholar 

  • Kanamori, H. (1972), Mechanisms of Tsunami Earthquakes, Phys. Earth Planet. Inter. 6, 346–359.

    Article  Google Scholar 

  • Kanamori, H. (1985), Non-double-couple seismic source. In Proc. 23rd Gen. Assemb. Int. Ass. Seism. Phys. Earth Inter. Tokyo, p. 425 (abstract).

    Google Scholar 

  • Kawata, Y., Benson, B. C., Borrero, J. C., Borrero, J. L., Davies, H. L., De Lange, W. P., Imamura, F., Letz, H., Nott, J., and Synolakis, C. E. (1999), Tsunami in Papua New Guinea was as Intense as First Thought, EOS. Trans. Am. Geophys. Union 80, 101, 104–105.

    Article  Google Scholar 

  • Kikuchi, M., Yamanaka, Y., Abe, K., Morita, Y., and Watada, S. (1998), Source Rupture Process of the Papua New Guinea Earthquake of July 17, 1998 Inferred from Teleseismic Body Waves. EOS, Trans. Am. Geophys. Union 79, (45) F573. (abstract).

    Google Scholar 

  • Kulikov, E. A., Rabinovich, A. B., Thomson, R. E., and Bornhold, B. D. (1996), The Landslide Tsunami of November 3,1994, Skagway Harbor,Alaska, J. Geophys. Res. 101, 6609–6615.

    Article  Google Scholar 

  • Lander, J. F. and Lockridge, P. A. (1989), United States Tsunamis. Publication 41–2. U.S. Department of Commerce.

    Google Scholar 

  • Legg, M. R. and Kamerling, M. J. (2003), Large-scale Basement-involved Landslides,California Continental Borderland, Pure Appl. Geophys. 160, 2033–2051.

    Article  Google Scholar 

  • Lynett, P. J., Borrero, J. C., Liu, P. L.-F., and Synolakis, C. E. (2003), Field Survey and Numerical Simulations: A Review of the 1998 Papua New Guinea Tsunami, Pure Appl. Geophys. 160, 2119–2146.

    Article  Google Scholar 

  • Ma,K.-F., Satake, K., and Kanamori,H. (1991), The Origin of the Tsunami Excited by the 1989 Loma Prieta Earthquake: Faulting or Slumping? Geophys. Res. Lett. 18, 637–640.

    Article  Google Scholar 

  • Matsumoto, T. and Tappin, D. R. (2003), Possible Coseismic Large-scale Landslide off the Northern Coast of Papua New Guinea in July 1998. Geophysical and Geological Results from SOS Cruises, Pure Appl. Geophys. 160, 1923–1943.

    Article  Google Scholar 

  • Matsuyama, M., Walsh, J. P., and Yeti, H. (1999), The Effect of Bathymetry on Tsunami Characteristics at Sissano Lagoon, Papua New Guinea, Geophys. Res. Lett. 26, 3513–3516.

    Article  Google Scholar 

  • Milne, J., Earthquakes and Other Earth Movements (Paul, Trench, Trübner & Co., London 1898).

    Google Scholar 

  • Montessus De Ballore, F., La Science Séismologique (A. Colin, Paris 1907).

    Google Scholar 

  • Murty, T. S. (1979), Submarine Slide-generated Water Waves in Kitimat Inlet, British Columbia, J. Geophys. Res. 84, 7777–7779.

    Article  Google Scholar 

  • Murty, T. S. (2002), Tsunami Wave Height Dependence on Landslide volume, Pure Appl. Geophys. 160, 2147–2153.

    Article  Google Scholar 

  • National Academy Of Sciences, The Great Alaska earthquake of 1964. In Eight Volumes, Committee on the Alaska earthquake of the Div. of Earth Sciences, National Research Council (National Acad. of Sciences, Washington, D.C. 1973), 291 pp.

    Google Scholar 

  • Okal, E. A. (1988), Seismic Parameters Controlling Far-field Tsunami Amplitudes: A Review, Natural Hazards 1, 67–96.

    Article  Google Scholar 

  • Okal, E. A. (1992), Use of the Mantle Magnitude M,„ for the Reassessment of the Seismic Moment of Historical Earthquakes. I: Shallow Events, Pure Appl. Geophys. 139, 17–57.

    Article  Google Scholar 

  • Okal, E. A. (2003a), T Waves from the 1998 Papua New Guinea Earthquake and its Aftershocks: Timing the Tsunamigenic Slump, Pure Appl. Geophys. 160, 1843–1863.

    Article  Google Scholar 

  • Okal, E. A. (2003b), Normal Modes Energetics for Far-field Tsunamis Generated by Dislocations and Landslides, Pure Appl. Geophys. 160, 2189–2221.

    Article  Google Scholar 

  • Okal, E. A. and Synolakis, C. E. (2003), Theoretical Comparison of Tsunamis from Dislocations and Landslides, Pure Appl. Geophys. 160, 2177–2188.

    Article  Google Scholar 

  • Pararas-Carayannis, G. (1986), The Pacific Tsunami Warning System, Earthquakes and Volcanoes 18, 122–130.

    Google Scholar 

  • Pelinovsky, E. and Poplavsky, A. (1996), Simplified Model of Tsunami Generation by Submarine Landslides, Phys. Chem. Earth 21, 13–17.

    Article  Google Scholar 

  • Piper, D. J. W. and Aksu, A. E. (1987), The Source and Origin of the 1929 Grand Banks Turbidity Current Inferred from Sediment Budgets, Geol. Mar. Lett. 7, 177–182.

    Article  Google Scholar 

  • Plafker, G. (1965), Tectonic Deformation Associated with the 1964 Alaskan Earthquake, Science 148, 1675–1687.

    Article  Google Scholar 

  • Plafker, G. (1972), Alaska Earthquake of 1964 and Chilean Earthquake of 1960: Implications for Arc Tectonics, J. Geophys. Res. 77, 901–925.

    Article  Google Scholar 

  • Plafker, G., Kachadoorian, R., Eckel, E. B., and Mayo, L. R. (1969), Effects of the Earthquake of March 27, 1964 on Various Communities, US Geol. Surv. Prof. Paper 542-G, US Geological Survey, Washington, DC.

    Google Scholar 

  • Plafker, G. and Savage, J. C. (1970), Mechanism of the Chilean Earthquakes of May 21 and 22, 1960, Geol. Soc. Am. Bull. 81, 1001–1030.

    Article  Google Scholar 

  • Prior, D. B. and Coleman, J. M. (1979), Submarine Landslides: Geometry and Nomenclature, Z. Geomorphol. 23, 415–426.

    Google Scholar 

  • Ruff, L. J. (2003), Some Aspects of Energy Balance and Tsunami Generation by Earthquakes and Landslides, Pure Appl. Geophys. 160, 2155–2176.

    Article  Google Scholar 

  • Satake, K. and Kanamori, H. (1991), Use of Tsunami Waveforms for Earthquake Source Study, Natural Hazards 4, 193–208.

    Article  Google Scholar 

  • Satake, K. and Tanioka, Y. (2003), The July 1998 Papua New Guinea Earthquake: Mechanism and Quantification of Unusual Tsunami Generation, Pure Appl. Geophys. 160, 2087–2118.

    Article  Google Scholar 

  • Satake, K., Bourgeois, J., Abe, Ku., Abe, Ka., Tsuji, Y., Imamura, F., Ito, Y., Katao, H., Noguera, E., and Estrada, F. (1993), Tsunami Field Survey of the 1992 Nicaragua Earthquake, EOS, Trans. Am. Geophys. Union, 74, 145, 156–157.

    Article  Google Scholar 

  • Sato, H., Shimamoto, T., Tsutsumi, A., and Kawamoto, E. (1995), Onshore Tsunami Deposits Caused by the 1993 Southwest Hokkaido and 1983 Japan Sea Earthquakes, Pure Appl. Geophys. 144, 693–717.

    Article  Google Scholar 

  • Schwab, W. C., Lee, H. J., and Twichell, D. C. (eds), Submarine Landslides: Selected Studies in the US Exclusive Economic Zone, US Geol. Surv. Bull. B-2002 (Washington, DC: US Geological Survey. 1993).

    Google Scholar 

  • Seed, H. B., Seed, R. B., Schlosser, F., Blondeau, F., and Juran, I. (1988), Report no. UCB/EERC. 88/110. Earthquake Engineering Research Center, University of California, Berkeley, CA.

    Google Scholar 

  • Shi, S., Dawson, A. G., and Smith, D. E. (1995), Coastal Sedimentation Associated with the December 12th, 1992 Tsunami in Flores, Indonesia, Pure Appl. Geophys. 144, 525–536.

    Article  Google Scholar 

  • Somerville, P. G. and Graves, R. W. (2003), Characterization of Earthquake Strong Ground Motion, Pure Appl. Geophys. 160, 1811–1828.

    Article  Google Scholar 

  • Stover, C. W. and Coffman, J. L. (1993), Seismicity of the United States,1568–1989, U.S. Geol. Survey Prof. Paper, 1527, US Govt. Printing Office, Washington, DC, 1993 (and updates for 1994–1995).

    Google Scholar 

  • Sweet, S. and Silver, E. A. (2003), Seismic Reflection Images of the Source Region of the 1998 Papua New Guinea Tsunami, Pure Appl. Geophys. 160, 1945–1968.

    Article  Google Scholar 

  • Sweet, S., Silver, E. A., Davies, H., Matsumoto, T., Watts, P., and Synolakis, C. E. (1999), Seismic Reflection Images of the Source Region of the Papua New Guinea Tsunami of July 17, 1998, EOS, Trans. Am. Geophys. Union 80, F750 (abstract).

    Google Scholar 

  • Synolakis, C. E., Borrero, J. C., Plafker, G., Yalçiner, A., Greene, G., and Watts, P. (2000), Modeling the 1994 Skagway, Alaska Tsunami, EOS, Trans. Am. Geophys. Union 81, F748 (abstract).

    Google Scholar 

  • Synolakis, C. E., Imamura, F., Tsuji, Y., Matsutomi, S., Tinti, B., Cook, B., and Ushman, M. (1995), Damage,Conditions of East Java Tsunami of 1994 Analyzed, EOS, Trans. Am. Geophys. Union 76 (26), 257, 261–262.

    Article  Google Scholar 

  • Synolakis, C. E., Bardet, J.-P., Borrero, J., Davies, H., Okal, E., Silver, E., Sweet, S. and Tappin, D. (2002), Slump origin of the 1998 Papua New Guinea tsunami. Proc. Roy. Soc. London, Ser. A 458, 763–789.

    Article  Google Scholar 

  • Syvitski, J. P. M. and Hutton, E. W. H. (2003), Failure of Marine Deposits and their Redistribution by Sediment Gravity Flows, Pure Appl. Geophys. 160, 2053–2069.

    Article  Google Scholar 

  • Tanioka, Y. (1999), Analysis of the Far-field Tsunamis Generated by the 1998 Papua New Guinea Earthquake, Geophys. Res. Lett. 26, 3393–3396.

    Article  Google Scholar 

  • Tanioka, Y. and Ruff, L. J. (1998), The 1998 Papua New Guinea Earthquake. An Outer Rise Event? EOS, Trans. Am. Geophys. Union, 79, F572 (abstract).

    Google Scholar 

  • Tanioka, Y. and Satake, K. (1996), Fault Parameters of the 1896 Sanriku Tsunami an Outer Rise Event? Geophys. Res. Lett. 23, 1549–1552.

    Article  Google Scholar 

  • Tappin, D. R. and 18 others (1999), Sediment Slump Likely Caused 1998 Papua New Guinea Tsunami, EOS, Trans. Am. Geophys. Union 80, 329, 334, 340.

    Article  Google Scholar 

  • Tappin, D. R., Watts, P., Mcmurtry, G. M., Lafoy, Y., and Matsumoto, T. (2001), The Sissano, Papua New Guinea Tsunami of July 1998 - Offshore Evidence on the Source Mechanism, Mar. Geol. 175, 1–23.

    Article  Google Scholar 

  • Titov, V. V. and Synolakis, C. E. (1998), Numerical Modeling of Tidal Wave Runup, J. Wtrwy Port Coast. Ocean Engng 124, 157–171.

    Article  Google Scholar 

  • Tsuji, Y., Imamura, F., Matsutomi, H., Synolakis, C. E., Nanang, P. T., Jumadi, Harada, S., Han, S. S., Arai, K., and Cook, B. (1995), Field Survey of the East Java Earthquake and Tsunami of June 3, 1994, Pure Appl. Geophys. 144, 839–854.

    Article  Google Scholar 

  • Turner, A. K. and Schuster, R. L. (eds.) (1996), Special Report 247, Transportation Research Board, Washington, DC.

    Google Scholar 

  • U.S. Geological Survey (1966–1970), The Alaska Earthquake March 27, 1964 Series, Geological Survey Professional Papers 542, 543, 544, 545, and 546, U.S. Dept. of Interior, USGS.

    Google Scholar 

  • Ward, S. N. (1980), Relationships of Tsunami Generation and an Earthquake Source, J. Phys. Earth 28, 441–474.

    Article  Google Scholar 

  • Ward, S. N. (2001), Landslide Tsunami, J. Geophys. Res. 106, 11,201–11,215.

    Article  Google Scholar 

  • Watts, P. (2000), Tsunami Features of Solid Block Underwater Landslides, J. Wtrwy Port Coast. Ocean Engng. 126, 144–152.

    Article  Google Scholar 

  • Wright, S. G. and Rathje, E. M. (2002), Triggering Mechanisms of Slope Instability and their Relationship to Earthquakes and Tsunamis, Pure Appl. Geophys. 160, 1865–1878.

    Article  Google Scholar 

  • Yalçiner, A. C., Borrero, J. C., Kanoglu, U., Watts, P., Synolakis, C. E., and Imamura, F. (1999), Field Survey of the 1999 Izmit Tsunami and Modeling Effort of New Tsunami Generation Mechanism. EOS, Trans. Am. Geophys. Union 80, F751 (abstract).

    Google Scholar 

  • Yeh, H., Imamura, F., Synolakis, C. E., Tsuji, Y., Liu, P., and Stu, S. (1993), The Flores Island Tsunami, EOS, Trans. Am. Geophys. Union 74(33), 369, 371–373.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Bardet, JP., Synolakis, C.E., Davies, H.L., Imamura, F., Okal, E.A. (2003). Landslide Tsunamis: Recent Findings and Research Directions. In: Bardet, JP., Imamura, F., Synolakis, C.E., Okal, E.A., Davies, H.L. (eds) Landslide Tsunamis: Recent Findings and Research Directions. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7995-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7995-8_1

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-6033-7

  • Online ISBN: 978-3-0348-7995-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics