Skip to main content

Geometric convexity and differential geometry

  • Chapter
Convexity and Its Applications

Abstract

The geometry of smooth convex hypersurfaces in euclidean n-space Rn on the one hand and the geometry of the boundary of arbitrary convex bodies in Rn on the other are closely related (see [1] §17). The former belongs to differential geometry, the latter to geometric convexity. Some theorems have a differential geometric version as well as a convexity version; these depend on each other.

Lecture held at the convexity-conference in Vienna 1981

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bonnesen, T. und W. Fenchel: Theorie der konvexen Körper. Springer Berlin (1974).

    Google Scholar 

  2. Blaschke, W.: Über affine Geometrie VII. Ber. Verh. Kgl. Sächs. Akad. Wiss. Leipzig 69, S. 306–318 (1917).

    Google Scholar 

  3. Heil, E.: Abschätzungen für einige Affininvarianten konvexer Kurven. Monatsh. Math. 71, S. 405–423 (1967).

    Article  Google Scholar 

  4. Santalo, L.A.: Un invariante afin para los cuerpos convexos del espacio de n dimensiones. Portug. Math. 8, S. 155–161 (1949).

    Google Scholar 

  5. Santalo, L.A.: Integral geometry in projective and affine spaces. Ann. of Math. 51, S. 739–755 (1950).

    Article  Google Scholar 

  6. Minkowski, H.: Volumen und Oberfläche. Math. Ann. 57, S. 447–495 (1903).

    Article  Google Scholar 

  7. Pogorelov, A.V.: The Minkowski-multidimensional problem. V.H. Winston and Sons. Washington D.C. (1978).

    Google Scholar 

  8. Böhmer, P.: Über elliptisch-konvexe Ovale. Math. Ann. 60, S. 256–262 (1905).

    Article  Google Scholar 

  9. Blaschke, W.: Über affine Geometrie I. Ber. Verh. Kgl. Sächs. Akad. Wiss. Leipzig 68, S. 217239 (1916).

    Google Scholar 

  10. Blaschke, W.: Über affine Geometrie VI. Ber. Verh. Kgl. Sächs. Akad. Wiss. Leipzig 69, S. 207–225 (1917).

    Google Scholar 

  11. Blaschke, W.: Vorlesungen über Differentialgeometrie II. Springer Berlin (1923).

    Google Scholar 

  12. Leichtweiss, K.: Konvexe Mengen. Dt. Verl. Wiss. Berlin (1980).

    Google Scholar 

  13. Mahler, K.: Ein Minimalproblem für konvexe Polygone. Math. (Zutphen) B 7, S. 118–127 (1939).

    Google Scholar 

  14. mit einer Korrektur im Israel J. Math. 29 (1978).

    Google Scholar 

  15. Mahler, K.: Ein Übertragungsprinzip für konvexe Körper. Cas. Mat. Fys. 68, S. 93–102 (1939).

    Google Scholar 

  16. Bambah, R.P.: Polar reciprocal convex bodies. Proc. Cambr. Phil. Soc. 51, S. 377–378 (1954).

    Article  Google Scholar 

  17. Voss, K.: Einige differentialgeometrische Kongruenzsätze füi geschlossene Flächen und Hyperflächen. Math. Ann. 131, S. 180–218 (1956).

    Article  Google Scholar 

  18. Leichtweiss, K.: Elementare Differentialgeometrie. Springer Berlin (1973).

    Google Scholar 

  19. Kubota, T.: Über konvex-geschlossene Mannigfaltigkeiten im n-dimensionalen Raum. Sci. Rep. Tohoku Univ. 14, S. 85–99 (1925).

    Google Scholar 

  20. Chern, S.S.: Integral formulas for hypersurfaces in euclidean space and their applications to uniqueness theorems. J. Math. Mech. 8, S. 947–955 (1959).

    Google Scholar 

  21. Garding, L.: An inequality for hyperbolic polynomials. J. Math. Mech. 8, S. 957–965 (1959).

    Google Scholar 

  22. Aleksandrov, A.D.: Neue Ungleichungen zwischen den gemischten Volumina und ihre Anwendungen. Mat. Sbornik N.S. 2, S. 1205–1238 (1937).

    Google Scholar 

  23. Fenchel, W. and B. Jessen: Mengenfunktionen und konvexe Körper. Kgl. Dansk. Vid. Sels. Math. -fys. Meddel. XVI 3, S. 3–31 (1938).

    Google Scholar 

  24. Leichtweiss, K.: Zum Beweis eines Eindeutigkeitssatzes von A.D. Aleksandrov. E.B. Christoffel. Birkhäuser Basel (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Basel AG

About this chapter

Cite this chapter

Leichtweiss, K. (1983). Geometric convexity and differential geometry. In: Gruber, P.M., Wills, J.M. (eds) Convexity and Its Applications. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-5858-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-5858-8_8

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-5860-1

  • Online ISBN: 978-3-0348-5858-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics