Skip to main content

Convexity in Banach spaces: some recent results

  • Chapter
Convexity and Its Applications

Abstract

We all recognize that some of the most fruitful ideas in a particular area of mathematics may well have originated elsewhere. In the case of convexity in Banach spaces, this occurred in 1967, when Marc Rieffel wanted to do a thorough classroom presentation of the Radon-Nikodÿm theorem for Banach space-valued measures. In formulating a condition on the range of such a measure which would be sufficient for the validity of the Radon-Nikodým theorem, yet would avoid earlier compactness hypotheses, he introduced the notion of a “dentable” set [41]. This was the start of a remarkable chain of results connecting vector-valued integration, the extremal structure of bounded convex sets and generic Fréchet differentiability of convex continuous functions. The details of this story through 1976 have been related in a lively and thorough manner by J. Diestel and J. Uhl in their monograph [14], while the more recent results are covered in the forthcoming lecture notes by R. Bourgin [9]. We will present a portion of the chain, centering our attention on the extremal structure of bounded closed convex subsets of Banach spaces (and differentiability properties of some closely related convex functions). This first section contains a review of the notions of exposed points, strongly exposed points, dentable sets and the Radon-Nikodým property (RNP). In Section 2 there is a discussion of the differentiability of convex functions on Banach spaces and the duality between Fréchet differentiability and strongly exposed points, followed by one of the main recent results in the subject (Theorem 2.8): A bounded closed convex set with the RNP is the closed convex hull of its strongly exposed points. The concluding Section 3 describes the Krein-Milman property and its relation to the RNP, as well as the duality between Asplund spaces and the RNP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Erik Alfsen, Compact convex sets and boundary integrals, Ergeb. der Math., vol 57, Springer-Verlag, Berlin, Heidelburg, New York (1971).

    Google Scholar 

  2. Anantharaman, R., T. Lewis and J.H.M. Whitfield, Smoothability and dentability in Banach spaces, Canad. Math. Bull. 24 (1), (1981), 59–68.

    Article  Google Scholar 

  3. Asimow, L., and A.J. Ellis, “Convexity Theory and its Applications in Functional Analysis” London Math. Soc. Monograph No. 16, Academic Press, N.Y. 1980.

    Google Scholar 

  4. Edgar Asplund and R.T. Rockafellar, Gradients of convex functions, Trans. Amer. Math. Soc. 139 (1969), 433–467.

    Article  Google Scholar 

  5. Bishop, E., and R.R. Phelps, The support functionals of a convex set, Proc. Sympos. Pure Math., vol 7, Amer. Math. Soc., Providence, R.I. (1963), 27–35.

    Google Scholar 

  6. Bourgain, J., Dentability and the Bishop-Phelps property, Israel J. Math. 28 (1977), 265–271.

    Google Scholar 

  7. Bourgain, J., A geometric characterization of the Radon-Nikodÿm property in Banach spaces, Compositio Math. 36 (1978), 3–6.

    Google Scholar 

  8. Bourgain, J., and M. Talagrand, Dans un espace de Banach reticulé solide, la propriété de Radon- Nikodÿm et celle de Krein-Milman sont equivalents, Proc. Amer. Math. Soc.; 81 (1981), 93–96.

    Google Scholar 

  9. Bourgin, R., Geometric aspects of convex sets with the Râdon-Nikodÿtn property, Springer Lecture Notes (to appear).

    Google Scholar 

  10. Bourgin, R., and G.A. Edgar, Noncompact simplexes in Banach spaces with the Radon- Nikodÿm property, J. Funct. Anal. 23 (1976), 162–176.

    Article  Google Scholar 

  11. Collier, J.B., The dual of a space with the Radon-Nikodÿin property, Pacific J. Math. 64 (1976), 103–106.

    Google Scholar 

  12. Davis, W.J., and R.R. Phelps, The Radon-Nikod m property and dentable sets in Banach spaces, Proc. Amer. Math. Soc. 45 (1974), 119–122.

    Article  Google Scholar 

  13. Joseph Diestel, Geometry of Banach Spaces-Selected Topics, Lecture Notes in Math. 485, Springer-Verlag, Berlin-Heidelberg-New York, (1975).

    Google Scholar 

  14. Diestel, J., and J.J. Uhl, Jr., Vector Measures, Math. Surveys Nr. 15, Amer. Math. Soc., Providence, R. I. (1977).

    Google Scholar 

  15. Edgar, G.A., A noncompact Choquet theorem, Proc. Amer. Math. Soc. 49 (1975), 354–358.

    Article  Google Scholar 

  16. Edgar, G.A., Extremal integral representations, J. Functional Anal. 23 (1976), 145–161.

    Article  Google Scholar 

  17. Ivar Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc. (N.S.) 1, (1979), 443–474.

    Google Scholar 

  18. Fitzpatrick, S.P., Monotone operators and dentability, Bull. Australian Math. Soc. 18 (1978), 77–82.

    Article  Google Scholar 

  19. Huff, R.E., Dentability and the Radon-Nikodÿm property, Duke Math. J. 41 (1974), 111–114.

    Google Scholar 

  20. Huff, R.E., and P.D. Morris, Dual spaces with the Krein-Milman property have the Radon- Nikodÿm property, Proc. Amer. Math. Soc. 49 (1975), 104–108.

    Google Scholar 

  21. Huff, R.E., and P.D. Morris, Geometric characterizations of the Radon-Nikodÿm property in Banach spaces, Studia Math. 56 (1976), 157–164.

    Google Scholar 

  22. R. Israel, Convexity in the Theory of Lattice Gases, Princeton Series in Physics, Princeton Univ. Press, Princeton, N.J. (1979).

    Google Scholar 

  23. James, R.C., Weakly compact sets, Trans. Amer. Math. Soc. 113 (1964), 129–140.

    Article  Google Scholar 

  24. James, R.C., Reflexivity and the sup of linear functionals, Israel J. Math. 13 (1972), 289–300.

    Google Scholar 

  25. James, R.C., Subbushes and extreme points in Banach spaces, Abstracts Amer. Math. Soc. 2 (1981), 599.

    Google Scholar 

  26. Jayne, J., and C.A. Rogers, The extremal structure of convex sets, J. Functional Anal. 26 (1977), 251–288.

    Article  Google Scholar 

  27. Kenderov, P.S., Monotone operators in Asplund spaces, C.R. Acad. Bulgare Sci. 30 (1977), 963–964.

    Google Scholar 

  28. Klee, V.L., Jr., Extremal structure of convex sets, Archiv der Math. 8 (1957), 234–240.

    Article  Google Scholar 

  29. Kunen, K., and H. Rosenthal, Martingale proofs of some geometrical results in Banach theory, preprint, 33pp.

    Google Scholar 

  30. Larman, D.G., and R.R. Phelps, Gateaux differentiability of convex functions on Banach spaces, J. Lond. Math. Soc. (2) 20 (1979), 115–127.

    Article  Google Scholar 

  31. Maynard, H.B., A geometrical characterization of Banach spaces having the Radon- Nikodÿm property, Trans. Amer. Math. Soc. 185 (1973), 493–500.

    Article  Google Scholar 

  32. Morris, P.D., Characterizations of closed convex sets with the RNP, due to J. Bourgain, John Rainwater Seminar Notes, Univ. of Wash., Jan. 1977.

    Google Scholar 

  33. Isaac Namioka, Characterizations of closed convex sets with the RNP, following Bourgain and Stegall, Rainwater Seminar, Univ. of Wash., Oct. 1976, 11 pp.

    Google Scholar 

  34. Isaac Namioka, and R.R. Phelps, Banach spaces which are Asplund spaces, Duke Math. J. 42 (1975), 735–750.

    Google Scholar 

  35. Phelps, R.R., A representation theorem for bounded convex sets, Proc. Amer. Math. Soc. 11 (1960), 976–983.

    Article  Google Scholar 

  36. Phelps, R.R., Lectures on Choquet’s theorem, D. Van Nostrand, Princeton, N.J. (1966).

    Google Scholar 

  37. Phelps, R.R., Support cones in Banach spaces and their applications, Advances Math. 13 (1974), 1–19.

    Article  Google Scholar 

  38. Phelps, R.R., Dentability and extreme points in Banach spaces, J. Funct. Anal. 16 (1974), 78–90.

    Article  Google Scholar 

  39. Phelps, R.R., Differentiability of convex functions on Banach spaces, Lecture notes (unpublished), University College London, January, 1978, 65 pp.

    Google Scholar 

  40. Phelps, R.R., Integral representation for elements of convex sets, Studies in Functional Analysis, MAA Studies in Math., vol. 21, R.G. Bartle, Ed., Math. Assoc. Amer. (1980), 115–157.

    Google Scholar 

  41. Rieffel, M.A., Dentable subsets of Banach spaces, with application to a Radon-Nikodÿm theorem, Functional Analysis (Proc. Conf., Irvine, Calif. (1966), B.R. Gelbaum, Ed., Academic Press, London, (1967), 71–77.

    Google Scholar 

  42. Wayne, A., Roberts and Dale E. Varberg, Convex Functions, Academic Press, New York- London (1973).

    Google Scholar 

  43. Jean Saint-Raymond, Représentation intégrale dans certains convexes, Sém. Choquet, Initiation à l’Analyse, 14e année, 1974/75, 1 1 pp.

    Google Scholar 

  44. Smul’yan, V.L. Sur la structure de la sphère unitaire dans l’espace de Banach, Mat. Sbomik (N.S.) 9, (51) (1941), 545–561.

    Google Scholar 

  45. Charles Stegall, The Radon-Nikodÿm property in conjugate Banach spaces, Trans. Amer. Math. Soc. 206 (1975), 213–223.

    Article  Google Scholar 

  46. Charles Stegall, The duality between Asplund spaces and spaces with the Radon-Nikodÿm property, Israel J. Math. 29 (1978), 408–412.

    Google Scholar 

  47. Charles Stegall, Optimization of functions on certain subsets of Banach spaces, Math. Annalen 236 (1978), 171–176.

    Article  Google Scholar 

  48. Francis Sullivan, On the duality between Asplund spaces and spaces with the Radon- Nikodÿm property, Proc. Amer. Math. Soc. 71 (1978), 155–156.

    Google Scholar 

  49. Thomas, E.G.F., A converse to Edgar’s theorem, Measure theory, Oberwolfach 1979 (Proc. Conf., Oberwolfach, 1979) Lecture Notes in Math. 794, Springer-Verlag, Berlin (1980), 497512.

    Google Scholar 

  50. Bourgain, J., La propriété de Radon-Nikodÿm, Publ. Math. de l’Université Pierre et Marie Curie, No. 36, (1979), 104.

    Google Scholar 

  51. Choquet, G., Lectures on Analysis, vol. II, J. Marsden, T. Lance, S. Gelbart (eds.), W.A. Benjamin (1969).

    Google Scholar 

  52. Giles, J.R., Convex analysis with application in differentiation of convex functions, Res. Notes in Math. 58, Pitman, Boston-London-Melbourne, 1982.

    Google Scholar 

  53. Weizsäcker, H.v., and G. Winkler, Non-compact extremal integral representations: Some probabilistic aspects, Functional Analysis: Surveys and Recent Results II, K.-D. Bierstedt, B. Fuchssteiner (eds.), North-Holland, (1980), 115–148.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Basel AG

About this chapter

Cite this chapter

Phelps, R.R. (1983). Convexity in Banach spaces: some recent results. In: Gruber, P.M., Wills, J.M. (eds) Convexity and Its Applications. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-5858-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-5858-8_12

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-5860-1

  • Online ISBN: 978-3-0348-5858-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics