Skip to main content

A Review of Recent Medical Imaging Modalities for Breast Cancer Detection: Active and Passive Method

  • Conference paper
  • First Online:
International Conference on Advanced Intelligent Systems for Sustainable Development (AI2SD’2023) (AI2SD 2023)

Abstract

Early screening of breast cancer using new medical imaging technologies can reduce the number of deaths among women. This paper presents a description of the state of the art of the most propagated types of carcinoma in women, as well as the concept and process of cancer cell growth, and the application of more recent imaging modalities for early breast cancer detection. We also present the contribution of our research laboratory to the development of a new embedded thermography system based on innovative technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. pr292_E.pdf. https://www.iarc.who.int/wp-content/uploads/2020/12/pr292_E.pdf

  2. Sung, H., et al.: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 71, 209–249 (2021). https://doi.org/10.3322/caac.21660

    Article  Google Scholar 

  3. Duncan, W., Kerr, G.R.: The curability of breast cancer. BMJ 2, 781–783 (1976). https://doi.org/10.1136/bmj.2.6039.781

    Article  Google Scholar 

  4. Fisher, C.M., Rabinovitch, R.A.: Breast cancer. In: Nieder, C. et Gaspar, L.E. (éd.) Decision Tools for Radiation Oncology. pp. 77‑89. Berlin, Heidelberg (2013)

    Google Scholar 

  5. Brierley, J., Gospodarowicz, M.K., Wittekind, C. (éd.): TNM classification of malignant tumours. John Wiley & Sons, Inc, Chichester, West Sussex, Hoboken, NJ, UK (2017)

    Google Scholar 

  6. Giuliano, A.E., et al.: Breast cancer-major changes in the American joint committee on cancer eighth edition cancer staging manual: updates to the AJCC Breast TNM staging system: the 8th Edition. CA: A Can. J. Clin. 67, 290–303 (2017). https://doi.org/10.3322/caac.21393

  7. mammary-gland. https://www.britannica.com/science/mammary-gland#/media/1/360922/119198

  8. Moore, K.L., Dalley, A.F., Agur, A.M.R., Milaire, J.: Moore, anatomie médicale: aspects fondamentaux et applications cliniques. De Boeck, Louvain-la-Neuve, Paris (2017)

    Google Scholar 

  9. en. https://icd.who.int/browse10/2019/en#/C50-C50

  10. PMH0072594. https://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0072594/

  11. Ellis, I.O., Galea, M., Broughton, N., Locker, A., Blamey, R.W., Elston, C.W.: Pathological prognostic factors in breast cancer. II. Histological type. Relationship with survival in a large study with long-term follow-up. Histopathology. 20, 479‑489 (2007). https://doi.org/10.1111/j.1365-2559.1992.tb01032.x

  12. El Fouhi, M., Benider, A., Kagambega Zoewendbem, A.G., Mesfioui, A.: Profil épidémiologique et anatomopathologique du cancer de sein au CHU Ibn Rochd, Casablanca. Pan Afr. Med. J. 37 (2020). https://doi.org/10.11604/pamj.2020.37.41.21336

  13. Aznag, F.Z., et al.: Epidemiological and Biological Profiling of Breast Cancer in Southern Morocco. Integr. J. Med. Sci. 5 (2018). https://doi.org/10.15342/ijms.v5ir.240

  14. Riggio, A.I., Varley, K.E., Welm, A.L.: The lingering mysteries of metastatic recurrence in breast cancer. Br. J. Cancer 124, 13–26 (2021). https://doi.org/10.1038/s41416-020-01161-4

    Article  Google Scholar 

  15. Bhushan, A., Gonsalves, A., Menon, J.U.: Current state of breast cancer diagnosis, treatment, and theranostics. Pharmaceutics 13, 723 (2021). https://doi.org/10.3390/pharmaceutics13050723

    Article  Google Scholar 

  16. Egan, R.L.: Experience with mammography in a tumor institution: evaluation of 1,000 studies. Radiology 75, 894–900 (1960). https://doi.org/10.1148/75.6.894

    Article  Google Scholar 

  17. Muller, S.: Full-field digital mammography designed as a complete system. Eur. J. Radiol. 31, 25–34 (1999). https://doi.org/10.1016/S0720-048X(99)00066-2

    Article  Google Scholar 

  18. Bick, U., Diekmann, F.: Digital mammography: what do we and what don’t we know? Eur. Radiol. 17, 1931–1942 (2007). https://doi.org/10.1007/s00330-007-0586-1

    Article  Google Scholar 

  19. Feig, S.: Radiation risk from mammography: is it clinically significant? Am. J. Roentgenol. 143, 469–475 (1984). https://doi.org/10.2214/ajr.143.3.469

    Article  Google Scholar 

  20. Wallyn, J., Anton, N., Akram, S., Vandamme, T.F.: Biomedical imaging: principles, technologies, clinical aspects, contrast agents, limitations and future trends in nanomedicines. Pharm. Res. 36, 78 (2019). https://doi.org/10.1007/s11095-019-2608-5

    Article  Google Scholar 

  21. Tan, T., Quek, C., Ng, G., Ng, E.: A novel cognitive interpretation of breast cancer thermography with complementary learning fuzzy neural memory structure. Expert Syst. Appl. 33, 652–666 (2007). https://doi.org/10.1016/j.eswa.2006.06.012

    Article  Google Scholar 

  22. Baxter, G.C., Graves, M.J., Gilbert, F.J., Patterson, A.J.: A meta-analysis of the diagnostic performance of diffusion MRI for breast lesion characterization. Radiology 291, 632–641 (2019). https://doi.org/10.1148/radiol.2019182510

    Article  Google Scholar 

  23. Kuhl, C.K., et al.: Mammography, breast ultrasound, and magnetic resonance imaging for surveillance of women at high familial risk for breast cancer. JCO. 23, 8469–8476 (2005). https://doi.org/10.1200/JCO.2004.00.4960

    Article  Google Scholar 

  24. Lee, S.H., et al.: Correlation between high resolution dynamic MR features and prognostic factors in breast cancer. Korean J. Radiol. 9, 10 (2008). https://doi.org/10.3348/kjr.2008.9.1.10

    Article  Google Scholar 

  25. Choi, E.J., Choi, H., Choi, S.A., Youk, J.H.: Dynamic contrast-enhanced breast magnetic resonance imaging for the prediction of early and late recurrences in breast cancer. Medicine 95, e5330 (2016). https://doi.org/10.1097/MD.0000000000005330

    Article  Google Scholar 

  26. Cai, H., Liu, L., Peng, Y., Wu, Y., Li, L.: Diagnostic assessment by dynamic contrast-enhanced and diffusion-weighted magnetic resonance in differentiation of breast lesions under different imaging protocols. BMC Cancer 14, 366 (2014). https://doi.org/10.1186/1471-2407-14-366

    Article  Google Scholar 

  27. Tao, W., Hu, C., Bai, G., Zhu, Y., Zhu, Y.: Correlation between the dynamic contrast-enhanced MRI features and prognostic factors in breast cancer: a retrospective case-control study. Medicine 97, e11530 (2018). https://doi.org/10.1097/MD.0000000000011530

    Article  Google Scholar 

  28. Petrillo, A., et al.: Digital breast tomosynthesis and contrast-enhanced dual-energy digital mammography alone and in combination compared to 2D digital synthetized mammography and MR imaging in breast cancer detection and classification. Breast J. 26, 860–872 (2020). https://doi.org/10.1111/tbj.13739

    Article  Google Scholar 

  29. Schelfout, K., et al.: Contrast-enhanced MR imaging of breast lesions and effect on treatment. Eur. J. Surg. Oncol. (EJSO). 30, 501–507 (2004). https://doi.org/10.1016/j.ejso.2004.02.003

    Article  Google Scholar 

  30. Zhang, Y., et al.: The role of contrast-enhanced MR mammography for determining candidates for breast conservation surgery. Breast Cancer 9, 231–239 (2002). https://doi.org/10.1007/BF02967595

    Article  Google Scholar 

  31. Glaser, K.J., Manduca, A., Ehman, R.L.: Review of MR elastography applications and recent developments. J. Magn. Reson. Imaging 36, 757–774 (2012). https://doi.org/10.1002/jmri.23597

    Article  Google Scholar 

  32. Patel, B.K., et al.: MR elastography of the breast: evolution of technique, case examples, and future directions. Clin. Breast Cancer 21, e102–e111 (2021). https://doi.org/10.1016/j.clbc.2020.08.005

    Article  Google Scholar 

  33. Hawley, J.R., Kalra, P., Mo, X., Raterman, B., Yee, L.D., Kolipaka, A.: Quantification of breast stiffness using MR elastography at 3 tesla with a soft sternal driver: a reproducibility study. J. Magn. Reson. Imaging 45, 1379–1384 (2017). https://doi.org/10.1002/jmri.25511

    Article  Google Scholar 

  34. McKnight, A.L., Kugel, J.L., Rossman, P.J., Manduca, A., Hartmann, L.C., Ehman, R.L.: MR elastography of breast cancer: preliminary results. Am. J. Roentgenol. 178, 1411–1417 (2002). https://doi.org/10.2214/ajr.178.6.1781411

    Article  Google Scholar 

  35. Lorenzen, J., et al.: MR elastography of the breast: preliminary clinical results. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr. 174, 830–834 (2002). https://doi.org/10.1055/s-2002-32690

    Article  Google Scholar 

  36. Bickel, H., et al.: Quantitative apparent diffusion coefficient as a noninvasive imaging biomarker for the differentiation of invasive breast cancer and ductal carcinoma in situ. Invest. Radiol. 50, 95–100 (2015). https://doi.org/10.1097/RLI.0000000000000104

  37. Ding, J.-R., Wang, D.-N., Pan, J.-L.: Apparent diffusion coefficient value of diffusion-weighted imaging for differential diagnosis of ductal carcinoma in situ and infiltrating ductal carcinoma. J. Can. Res. Ther. 12, 744 (2016). https://doi.org/10.4103/0973-1482.154093

    Article  Google Scholar 

  38. Pereira, N.P., et al.: Diffusion-weighted magnetic resonance imaging of patients with breast cancer following neoadjuvant chemotherapy provides early prediction of pathological response – a prospective study. Sci. Rep. 9, 16372 (2019). https://doi.org/10.1038/s41598-019-52785-3

    Article  Google Scholar 

  39. Bolan, P.J., et al.: In vivo quantification of choline compounds in the breast with1H MR spectroscopy. Magn. Reson. Med. 50, 1134–1143 (2003). https://doi.org/10.1002/mrm.10654

    Article  Google Scholar 

  40. Jagannathan, N.R., et al.: Evaluation of total choline from in-vivo volume localized proton MR spectroscopy and its response to neoadjuvant chemotherapy in locally advanced breast cancer. Br. J. Cancer 84, 1016–1022 (2001). https://doi.org/10.1054/bjoc.2000.1711

    Article  Google Scholar 

  41. Podo, F., et al.: Abnormal choline phospholipid metabolism in breast and ovary cancer: molecular bases for noninvasive imaging approaches. CMIR. 3, 123–137 (2007). https://doi.org/10.2174/157340507780619160

    Article  Google Scholar 

  42. Tozaki, M., Fukuma, E.: 1 H MR spectroscopy and diffusion-weighted imaging of the breast: are they useful tools for characterizing breast lesions before biopsy? Am. J. Roentgenol. 193, 840–849 (2009). https://doi.org/10.2214/AJR.08.2128

    Article  Google Scholar 

  43. Stanwell, P., Mountford, C.: In vivo proton MR spectroscopy of the breast. RadioGraphics. 27, S253–S266 (2007). https://doi.org/10.1148/rg.27si075519

  44. Fardanesh, R., Marino, M.A., Avendano, D., Leithner, D., Pinker, K., Thakur, S.B.: Proton MR spectroscopy in the breast: technical innovations and clinical applications. J. Magn. Reson. Imaging 50, 1033–1046 (2019). https://doi.org/10.1002/jmri.26700

    Article  Google Scholar 

  45. Kadoya, T., Aogi, K., Kiyoto, S., Masumoto, N., Sugawara, Y., Okada, M.: Role of maximum standardized uptake value in fluorodeoxyglucose positron emission tomography/computed tomography predicts malignancy grade and prognosis of operable breast cancer: a multi-institute study. Breast Cancer Res. Treat. 141, 269–275 (2013). https://doi.org/10.1007/s10549-013-2687-7

    Article  Google Scholar 

  46. Lavayssière, R., Cabée, A.-E., Filmont, J.-E.: Positron emission tomography (PET) and breast cancer in clinical practice. Eur. J. Radiol. 69, 50–58 (2009). https://doi.org/10.1016/j.ejrad.2008.07.039

    Article  Google Scholar 

  47. Narayanan, D., Berg, W.A.: Dedicated breast gamma camera imaging and breast PET. PET Clinics. 13, 363–381 (2018). https://doi.org/10.1016/j.cpet.2018.02.008

    Article  Google Scholar 

  48. Hsu, D.F.C., Freese, D.L., Levin, C.S.: Breast-dedicated radionuclide imaging systems. J. Nucl. Med. 57, 40S-45S (2016). https://doi.org/10.2967/jnumed.115.157883

    Article  Google Scholar 

  49. Liu, H., Zhan, H., Sun, D.: Comparison of 99mTc-MIBI scintigraphy, ultrasound, and mammography for the diagnosis of BI-RADS 4 category lesions. BMC Cancer 20, 463 (2020). https://doi.org/10.1186/s12885-020-06938-7

    Article  Google Scholar 

  50. Gong, Z., Williams, M.B.: Comparison of breast specific gamma imaging and molecular breast tomosynthesis in breast cancer detection: evaluation in phantoms: Comparison of BSGI and MBT in cancer detection. Med. Phys. 42, 4250–4259 (2015). https://doi.org/10.1118/1.4922398

    Article  Google Scholar 

  51. Surti, S.: Radionuclide methods and instrumentation for breast cancer detection and diagnosis. Semin. Nucl. Med. 43, 271–280 (2013). https://doi.org/10.1053/j.semnuclmed.2013.03.003

    Article  Google Scholar 

  52. Brem, R.F., Ruda, R.C., Yang, J.L., Coffey, C.M., Rapelyea, J.A.: Breast-specific γ-imaging for the detection of mammographically occult breast cancer in women at increased risk. J. Nucl. Med. 57, 678–684 (2016). https://doi.org/10.2967/jnumed.115.168385

    Article  Google Scholar 

  53. Urbano, N., Scimeca, M., Tancredi, V., Bonanno, E., Schillaci, O.: 99mTC-sestamibi breast imaging: Current status, new ideas and future perspectives. Semin. Cancer Biol. 84, 302–309 (2022). https://doi.org/10.1016/j.semcancer.2020.01.007

    Article  Google Scholar 

  54. Liu, H., Zhan, H., Sun, D., Zhang, Y.: Comparison of BSGI, MRI, mammography, and ultrasound for the diagnosis of breast lesions and their correlations with specific molecular subtypes in Chinese women. BMC Med. Imaging 20, 98 (2020). https://doi.org/10.1186/s12880-020-00497-w

    Article  Google Scholar 

  55. Kaplan, S.S.: Automated whole breast ultrasound. Radiol. Clin. North Am. 52, 539–546 (2014). https://doi.org/10.1016/j.rcl.2014.01.002

    Article  Google Scholar 

  56. Candelaria, R., Fornage, B.D.: Second-look us examination of MR-detected breast lesions. J. Clin. Ultrasound 39, 115–121 (2011). https://doi.org/10.1002/jcu.20784

    Article  Google Scholar 

  57. Siu, A.L.: On behalf of the U.S. Preventive services task force: screening for breast cancer: U.S. preventive services task force recommendation statement. Ann Intern Med. 164, 279 (2016). https://doi.org/10.7326/M15-2886

  58. Morales-Cervantes, A., et al.: An automated method for the evaluation of breast cancer using infrared thermography. EXCLI J. 17:Doc989; ISSN 1611–2156 (2018). https://doi.org/10.17179/EXCLI2018-1735

  59. Kennedy, D.A., Lee, T., Seely, D.: A comparative review of thermography as a breast cancer screening technique. Integr. Cancer Ther. 8, 9–16 (2009). https://doi.org/10.1177/1534735408326171

    Article  Google Scholar 

  60. Hakim, A., Awale, R.N.: Thermal imaging - an emerging modality for breast cancer detection: a comprehensive review. J. Med. Syst. 44, 136 (2020). https://doi.org/10.1007/s10916-020-01581-y

    Article  Google Scholar 

  61. Santana, M.A.: Breast cancer diagnosis based on mammary thermography and extreme learning machines. Res. Biomed. Eng. 34, 45‑53 (2018). https://doi.org/10.1590/2446-4740.05217

  62. Bahramiabarghouei, H., Porter, E., Santorelli, A., Gosselin, B., Popovic, M., Rusch, L.A.: Flexible 16 antenna array for microwave breast cancer detection. IEEE Trans. Biomed. Eng. 62, 2516–2525 (2015). https://doi.org/10.1109/TBME.2015.2434956

    Article  Google Scholar 

  63. Wang, F., Arslan, T., Wang, G.: Breast cancer detection with microwave imaging system using wearable conformal antenna arrays. In: 2017 IEEE International Conference on Imaging Systems and Techniques (IST), pp. 1‑6. IEEE, Beijing (2017)

    Google Scholar 

  64. Porter, E., Bahrami, H., Santorelli, A., Gosselin, B., Rusch, L.A., Popovic, M.: A wearable microwave antenna array for time-domain breast tumor screening. IEEE Trans. Med. Imaging 35, 1501–1509 (2016). https://doi.org/10.1109/TMI.2016.2518489

    Article  Google Scholar 

  65. Preece, A.W., Craddock, I., Shere, M., Jones, L., Winton, H.L.: MARIA M4: clinical evaluation of a prototype ultrawideband radar scanner for breast cancer detection. J. Med. Imag. 3, 033502 (2016). https://doi.org/10.1117/1.JMI.3.3.033502

    Article  Google Scholar 

  66. Duijm, L., Guit, G., Zaat, J., Koomen, A., Willebrand, D.: Sensitivity, specificity and predictive values of breast imaging in the detection of cancer. Br. J. Cancer 76, 377–381 (1997). https://doi.org/10.1038/bjc.1997.393

    Article  Google Scholar 

  67. Elouerghi, A., Bellarbi, L., Khomsi, Z., Jbari, A., Errachid, A., Yaakoubi, N.: A flexible wearable thermography system based on bioheat microsensors network for early breast cancer detection: IoT technology. J. Electr. Comput. Eng. 2022, 1–13 (2022). https://doi.org/10.1155/2022/5921691

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achraf Elouerghi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Elouerghi, A., Khomsi, Z., Bellarbi, L. (2024). A Review of Recent Medical Imaging Modalities for Breast Cancer Detection: Active and Passive Method. In: Ezziyyani, M., Kacprzyk, J., Balas, V.E. (eds) International Conference on Advanced Intelligent Systems for Sustainable Development (AI2SD’2023). AI2SD 2023. Lecture Notes in Networks and Systems, vol 904. Springer, Cham. https://doi.org/10.1007/978-3-031-52388-5_27

Download citation

Publish with us

Policies and ethics