Skip to main content

Evaluating the Effectiveness of Ultraviolet-C Lamps for Reducing Escherichia Coli: Distance and Exposure Time

  • Chapter
  • First Online:
Innovations in Biomedical Engineering 2023

Abstract

An increasing number of healthcare-associated infections indicates a need to search for the ideal disinfection method. The high biocidal efficacy of the most common disinfection method, UV-C radiation, has been confirmed in laboratory conditions; however, the real biocidal has not been determined yet. UV-C radiation's effectiveness on surface disinfection was evaluated at different distances of bacterial samples (Escherichia coli) from UV-C lamps and exposure times of radiation. The results of microbiological tests were presented as changes in the colony-forming unit (CFU/mL) and average colony size (mean) under monitoring the radiation dose emitted by the radiation source.

The highest percentage reduction of the CFU/mL (83%) was measured at a distance of 10 cm from the UV-C lamp (2 x 36 W253.7 nm), exposed to radiation for one hour. The UV-C radiation is ineffective at a distance higher than one meter on a porous surface, indicating a need for further studies on modifying this method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdollahi, M., Hosseini, A.: Hydrogen Peroxide. Encyclopedia of Toxicology, pp. 967–970. Academic Press (2014). https://doi.org/10.1016/b978-0-12-386454-3.00736-3

  2. Arkusz, K., Pasik, K., Halinski, A., Halinski, A.: Surface analysis of ureteral stent before and after implantation in the bodies of child patients. Urolithiasis 49(1), 83–92 (2021). https://doi.org/10.1007/s00240-020-01211-9

    Article  Google Scholar 

  3. Arrage, A.A., Phelps, T.J., Benoit, R.E., Palumbo, A.V., White, D.C.: Bacterial sensitivity to UV light as a model for ionizing radiation resistance. J. Microbiol. Methodss. 18, 127–136 (1993)

    Article  Google Scholar 

  4. Białoszewski, D., Bocian, E., Tyski, S.: Ozonoterapia oraz zastosowanie ozonu w dezynfekcji. Post. Mikrobiol. 51(3), 177–184 (2012)

    Google Scholar 

  5. Boyce, J.M., Farrel, P.A., Towle, D., Fekieta, R., Aniskiewicz, M.: Impact of room location on UV-C irradiance and UV-C dosage and antimicrobial effect delivered by a mobile UV-C light device. Infect. Control Hosp. Epidemiol. 37(6), 667–672 (2016). https://doi.org/10.1017/ice.2016.35

    Article  Google Scholar 

  6. Bucheli-Witschel, M., Bassin, C., Egli, T.: UV-C inactivation in Escherichia coli is affected by growth conditions preceding irradiation, in particular by the specific growth rate. J. Appl. Microbiol. 109, 1733–1744 (2010). https://doi.org/10.1111/j.1365-2672.2010.04802.x

    Article  Google Scholar 

  7. Chen, H., Rui, D., Ren, W., Zhang, S., Pengrui, D., Zhang, Y.: The microbial activity in PM2.5 in indoor air: as an index of air quality level. Aerosol Air Quality Res. 21(2), 200101 (2021). https://doi.org/10.4209/aaqr.2020.03.0101

    Article  Google Scholar 

  8. Cheng, Y., et al.: Inactivation of Listeria and E. coli by Deep-UV LED: effect of substrate conditions on inactivation kinetics. Sci. Rep. 10, 3411 (2020)

    Google Scholar 

  9. Einarsson, E., Svärd, S.G., Troell, K.: UV irradiation responses in Giardia intestinalis. Parasitol. 154, 25–32 (2015). https://doi.org/10.1016/j.exppara.2015.03.024

    Article  Google Scholar 

  10. Flemming, H.C., Wuertz, S.: Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17, 247–260 (2019). https://doi.org/10.1038/s41579-019-0158-9

    Article  Google Scholar 

  11. Illuminating Engineering Society Committee Report: IES CR-2–20-V1

    Google Scholar 

  12. Klevens, R.M., et al.: Estimating health care-associated infections and deaths in US hospitals, 2002. Public Health Rep. 122, 160–166 (2007). https://doi.org/10.1177/003335490712200205

    Article  Google Scholar 

  13. Łada-Tondyra, E., Jakubas, A.: Porównanie systemów tekstronicznych ograniczających rozwój Bakterii. Przegl¡d elektrotechniczny 96(2) (2020)

    Google Scholar 

  14. Nagarjuna, D., Mittal, G., Dhanda, R.S., Verma, P.K., Gaind, R., Yadav, M.: Faecal Escherichia coli isolates show potential to cause endogenous infection in patients admitted to the ICU in a tertiary care hospital. New Microbes New Infect. 7, 57–66 (2015). https://doi.org/10.1016/j.nmni.2015.05.006

    Article  Google Scholar 

  15. Nycz, M., Paradowska, E., Arkusz, K., Kudlinski, B., Krasicka-Cydzik, E.: Surface analysis of long-term hemodialysis catheters made of carbothane (poly(carbonate)urethane) before and after implantation in the patients’ bodies. Acta Bioeng. Biomech. 20(2), 47–53 (2018). https://doi.org/10.5277/ABB-01075-2017-02

    Article  Google Scholar 

  16. Ozer, N.P., Demirci, A.: Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes inoculated on raw salmon fillets by pulsed UV-light treatment. Int. J. Food Sci. 41(4), 354–360 (2006). https://doi.org/10.1111/j.1365-2621.2005.01071.x

    Article  Google Scholar 

  17. Patra, V., Byrne, S.N., Wolf, P.: The Skin Microbiome: is it affected by UV-induced immune suppression? Front. Microbiol. 7 (2016). https://doi.org/10.3389/fmicb.2016.01235

  18. Sikora, A., Zahra, F.: Nosocomial Infections. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing (2022). PMID: 32644738

    Google Scholar 

  19. Singh, H., Bhardwaj, S.K., Khatri, M., Kim, K.-H., Bhardwaj, N.: UV-C radiation for food safety: an emerging technology for the microbial disinfection of food products. Chem. Eng. J. 417, 128084 (2021). https://doi.org/10.1016/j.cej.2020.128084

    Article  Google Scholar 

  20. Sokół-Leszczyńska, B., Sztark, E., Leszczyński, P., Młynarczyk, G., Wróblewska, M.: Przygotowanie instrumentarium medycznego do zabiegów chirurgicznych. Część II – sterylizacja i reprocesowanie. Post. Mikrobiol 51(4), 315–321 (2012)

    Google Scholar 

  21. Vermeulen, N., Keeler, W.J., Nandakumar, K., Leung, K.T.: The bactericidal effect of ultraviolet and visible light on Escherichia coli. Biotechnol. Bioeng. 99(3), 550–556 (2007). https://doi.org/10.1002/bit.21611

    Article  Google Scholar 

  22. Walker, C., Ko, G.: Effect of ultraviolet germicidal irradiation on viral aerosols. Environ. Sci. Technol. 41, 5460–5465 (2007). https://doi.org/10.1021/es070056u

    Article  Google Scholar 

  23. Wlazlo, L., Drabik, K., Al-Shammari, K.I.A., Batkowska, J., Nowakowicz-Debek, B., Gryzińska, M.: Use of reactive oxygen species (ozone, hydrogen peroxide) for disinfection of hatching eggs. Poult. Sci. (2020). https://doi.org/10.1016/j.psj.2019.12.039

    Article  Google Scholar 

  24. Zeng, F., et al.: Inactivation of chlorine-resistant bacterial spores in drinking water using UV irradiation, UV/Hydrogen peroxide and UV/Peroxymonosulfate: efficiency and mechanism. J. Clean. Prod. 243, 118666 (2020). https://doi.org/10.1016/j.jclepro.2019.118666

  25. Zielnik-Jurkiewicz B., Rakowska-Szkudlarek M.: Zakażenia patogenami alarmowymi na Oddziale Otolaryngologicznym Szpitala Dziecięcego im. prof. dr. med. Jana Bogdanowicza w latach 2005–2008. Otolaryngol Pol. 63(6), 513–519 (2009). https://doi.org/10.1016/s0030-6657(09)70171-4

Download references

Acknowledgement

This work was founded by Polish National Centre for Research and Development, "Using UV-C technology to reduce transmission SARS-CoV-2 virus and reduction the transmission of infections in hospitals", SZPITALE-JEDNOIMIENNE/57/2020 realized in years 2021–2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamila Pasik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pasik, K., Arkusz, K., Klekiel, T., Woźniak, W., Stryjski, R. (2024). Evaluating the Effectiveness of Ultraviolet-C Lamps for Reducing Escherichia Coli: Distance and Exposure Time. In: Gzik, M., Paszenda, Z., Piętka, E., Tkacz, E., Milewski, K., Jurkojć, J. (eds) Innovations in Biomedical Engineering 2023. Lecture Notes in Networks and Systems, vol 875. Springer, Cham. https://doi.org/10.1007/978-3-031-52382-3_24

Download citation

Publish with us

Policies and ethics