Skip to main content

Receding Horizon Control on the Broadcast of Information in Stochastic Networks

  • Conference paper
  • First Online:
Distributed Autonomous Robotic Systems (DARS 2022)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 28))

Included in the following conference series:

  • 231 Accesses

Abstract

This paper focuses on the broadcast of information on robot networks with stochastic network interconnection topologies. Problematic communication networks are almost unavoidable in areas where we wish to deploy multi-robotic systems, usually due to a lack of environmental consistency, accessibility, and structure. We tackle this problem by modeling the broadcast of information in a multi-robot communication network as a stochastic process with random arrival times, which can be produced by irregular robot movements, wireless attenuation, and other environmental factors. Using this model, we provide and analyze a receding horizon control strategy to control the statistics of the information broadcast. The resulting strategy compels the robots to re-direct their communication resources to different neighbors according to the current propagation process to fulfill global broadcast requirements. Based on this method, we provide an approach to compute the expected time to broadcast the message to all nodes. Numerical examples are provided to illustrate the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bar-Noy, A., Schieber, B.: The canadian traveller problem. In: Proceedings of the Second Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 261–270 (1991)

    Google Scholar 

  2. Brauer, F.: Compartmental models in epidemiology. In: Brauer, F., van den Driessche, P., Wu, J. (eds.) Mathematical Epidemiology, pp. 19–79. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78911-6_2

  3. Breitenmoser, A., Schwager, M., Metzger, J.C., Siegwart, R., Rus, D.: Voronoi coverage of non-convex environments with a group of networked robots. In: 2010 IEEE International Conference on Robotics and Automation, pp. 4982–4989 (2010). https://doi.org/10.1109/ROBOT.2010.5509696

  4. Cassandras, C.G.: Smart cities as cyber-physical social systems. Engineering 2(2), 156–158 (2016)

    Article  Google Scholar 

  5. Cator, E., Van Mieghem, P.: Second-order mean-field susceptible-infected-susceptible epidemic threshold. Phys. Rev. E 85, 056111 (2012). https://doi.org/10.1103/PhysRevE.85.056111

    Article  Google Scholar 

  6. Ellis, M., Durand, H., Christofides, P.D.: A tutorial review of economic model predictive control methods. J. Process Control 24(8), 1156–1178 (2014)

    Article  Google Scholar 

  7. Gusrialdi, A., Hirche, S., Hatanaka, T., Fujita, M.: Voronoi based coverage control with anisotropic sensors. In: Proceedings of the IEEE American Control Conference, pp. 736–741 (2008)

    Google Scholar 

  8. Hollinger, G.A., Singh, S.: Multirobot coordination with periodic connectivity: theory and experiments. IEEE Trans. Rob. 28(4), 967–973 (2012)

    Google Scholar 

  9. Hsieh, M.A., Kumar, V., Chaimowicz, L.: Decentralized controllers for shape generation with robotic swarms. Robotica 26(5), 691–701 (2008)

    Article  Google Scholar 

  10. Huang, L., Park, K., Lai, Y.C.: Information propagation on modular networks. Phys. Rev. E 73(3), 035103 (2006)

    Article  Google Scholar 

  11. Khelil, A., Becker, C., Tian, J., Rothermel, K.: An epidemic model for information diffusion in manets. In: Proceedings of the 5th ACM International Workshop on Modeling Analysis and Simulation of Wireless and Mobile Systems, pp. 54–60 (2002)

    Google Scholar 

  12. Khodayi-Mehr, R., Kantaros, Y., Zavlanos, M.M.: Distributed state estimation using intermittently connected robot networks. IEEE Trans. Robot. 35(3), 709–724 (2019). https://doi.org/10.1109/TRO.2019.2897865

  13. Knizhnik, G., Li, P., Yu, X., Hsieh, M.A.: Flow-based control of marine robots in gyre-like environments. In: 2022 IEEE international Conference on Robotics and Automation (ICRA). IEEE (2022)

    Google Scholar 

  14. Moarref, S., Kress-Gazit, H.: Automated synthesis of decentralized controllers for robot swarms from high-level temporal logic specifications. Auton. Robot. 44(3), 585–600 (2020)

    Article  Google Scholar 

  15. Nikolova, E., Karger, D.R.: Route planning under uncertainty: the Canadian traveller problem. In: Proceedings of the 23rd National Conference on Artificial Intelligence (AAAI 2008), pp. 969–974. AAAI Press (2008)

    Google Scholar 

  16. Øksendal, B., Sulem, A.: Applied Stochastic Control of Jump Diffusions, 2nd edn. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-69826-5

  17. Paré, P.E., Beck, C.L., Nedić, A.: Epidemic processes over time-varying networks. IEEE Trans. Control Netw. Syst. 5(3), 1322–1334 (2018). https://doi.org/10.1109/TCNS.2017.2706138

  18. Preciado, V.M., Zargham, M., Enyioha, C., Jadbabaie, A., Pappas, G.J.: Optimal resource allocation for network protection against spreading processes. IEEE Trans. Control Netw. Syst. 1(1), 99–108 (2014). https://doi.org/10.1109/TCNS.2014.2310911

  19. Sahneh, D.F., Scoglio, C., Van Mieghem, P.: Generalized epidemic mean-field model for spreading processes over multilayer complex networks. IEEE/ACM Trans. Netw. 21(5), 1609–1620 (2013). https://doi.org/10.1109/TNET.2013.2239658

  20. Schnoerr, D., Sanguinetti, G., Grima, R.: Comparison of different moment-closure approximations for stochastic chemical kinetics. J. Chem. Phys. 143(18), 185101 (2015). https://doi.org/10.1063/1.4934990

    Article  Google Scholar 

  21. Shen, L., Yu, X., Hsieh, M.A.: Topology control of a periodic time-varying communication network with stochastic temporal links. In: 2022 American Control Conference (ACC), pp. 4211–4217. IEEE (2022)

    Google Scholar 

  22. Sopasakis, P., Patrinos, P., Sarimveis, H.: MPC for sampled-data linear systems: guaranteeing constraint satisfaction in continuous-time. IEEE Trans. Autom. Control 59(4), 1088–1093 (2014). https://doi.org/10.1109/TAC.2013.2285786

  23. Twigg, J., Dagefu, F., Chopra, N., Sadler, B.M.: Robotic parasitic array optimization in outdoor environments. In: 2019 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 1–8 (2019). https://doi.org/10.1109/SSRR.2019.8848974

  24. Van Mieghem, P., Cator, E.: Epidemics in networks with nodal self-infection and the epidemic threshold. Phys. Rev. E 86, 016116 (2012). https://doi.org/10.1103/PhysRevE.86.016116

    Article  Google Scholar 

  25. Watkins, N.J., Nowzari, C., Pappas, G.J.: A robust moment closure for general continuous-time epidemic processes. In: 2018 IEEE Conference on Decision and Control (CDC), pp. 244–249 (2018). https://doi.org/10.1109/CDC.2018.8618664

  26. Watkins, N.J., Nowzari, C., Pappas, G.J.: Robust economic model predictive control of continuous-time epidemic processes. IEEE Trans. Autom. Control 65(3), 1116–1131 (2020). https://doi.org/10.1109/TAC.2019.2919136

    Article  MathSciNet  Google Scholar 

  27. Wei, C., Yu, X., Tanner, H.G., Hsieh, M.A.: Synchronous rendezvous for networks of active drifters in gyre flows. In: Distributed Autonomous Robotic Systems, pp. 413–425. Springer, Cham (2019)

    Google Scholar 

  28. Yu, X., Hsieh, M.A.: Synthesis of a time-varying communication network by robot teams with information propagation guarantees. IEEE Robot. Automat. Lett. 5(2), 1413–1420 (2020)

    Google Scholar 

  29. Yu, X., Hsieh, M.A., Wei, C., Tanner, H.G.: Synchronous rendezvous for networks of marine robots in large scale ocean monitoring. Front. Robot. AI 6, 76 (2019)

    Google Scholar 

  30. Yu, X., Saldaña, D., Shishika, D., Hsieh, M.A.: Resilient consensus in robot swarms with periodic motion and intermittent communication. IEEE Trans. Robot. 38, 110–125 (2021). https://doi.org/10.1109/TRO.2021.3088765

  31. Zanette, D.H.: Dynamics of rumor propagation on small-world networks. Phys. Rev. E 65(4), 041908 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of ARL DCIST CRA W911NF-17-2-0181, Office of Naval Research (ONR) Award No. N00014-22-1-2157.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thales C. Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Silva, T.C., Shen, L., Yu, X., Hsieh, M.A. (2024). Receding Horizon Control on the Broadcast of Information in Stochastic Networks. In: Bourgeois, J., et al. Distributed Autonomous Robotic Systems. DARS 2022. Springer Proceedings in Advanced Robotics, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-031-51497-5_16

Download citation

Publish with us

Policies and ethics