Skip to main content

An Explainable AI-Based Framework for Supporting Decisions in Energy Management

  • Chapter
  • First Online:
Machine Learning Applications for Intelligent Energy Management

Abstract

Climate change and energy production and consumption are two inextricably linked concrete concepts of great concern. In an attempt to guarantee our future, the European Union (EU) has prioritized the addressing of both concepts, creating a new social contract between its citizens and the environment. The dazzling progress in its methodologies and applications during the recent years and the familiarization of the public with its abilities indicate Artificial Intelligence (AI) as a potential and powerful tool towards addressing important threats that climate change imposes. However, when using AI as a tool, it is vital to do so responsibly and transparently. Explainable Artificial Intelligence (xAI) has been coined as the term that describes the route of responsibility when implementing AI-driven systems. In this paper, we expand applications that have been previously built to address the problem of energy production and consumption. Specifically, (i) we conduct a survey to key stakeholders of the energy sector in the EU, (ii) we analyse the survey to define the required depth of AI explainability and (iii) we implement the outcomes of our analysis by developing a useful xAI framework that can guarantee higher adoption rates for our AI system and a more responsible and safe space for that system to be deployed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In this work, the term “energy producer” refers to an electricity producer, but, in more general terms, the term may as well refer to a natural gas producer.

References

  1. P. Agreement, Paris agreement, in Report of the Conference of the Parties to the United Nations Framework Convention on Climate Change (21st Session, 2015: Paris). Retrived December. vol. 4, HeinOnline (2015), p. 2017

    Google Scholar 

  2. J. Tollefson, K.R. Weiss, Nations adopt historic global climate accord: agreement commits world to holding warming’well below’2 [degrees] c. Nature 582(7582), 315–317 (2015)

    Article  Google Scholar 

  3. H. Doukas, A. Nikas, M. González-Eguino, I. Arto, A. Anger-Kraavi, From integrated to integrative: delivering on the Paris agreement. Sustainability 10(7), 2299 (2018)

    Article  Google Scholar 

  4. S. Carley, D.M. Konisky, The justice and equity implications of the clean energy transition. Nat. Energy 5(8), 569–577 (2020)

    Article  Google Scholar 

  5. E. Papadis, G. Tsatsaronis, Challenges in the decarbonization of the energy sector. Energy 205, 118025 (2020)

    Article  Google Scholar 

  6. P. Friedlingstein, M. O’sullivan, M.W. Jones, R.M. Andrew, J. Hauck, A. Olsen, G.P. Peters, W. Peters, J. Pongratz, S. Sitch et al., Global carbon budget 2020. Earth Syst. Sci. Data 12(4), 3269–3340 (2020)

    Article  Google Scholar 

  7. A. Hope, T. Roberts, I. Walker, Consumer engagement in low-carbon home energy in the United Kingdom: implications for future energy system decentralization. Energy Res. Soc. Sci. 44, 362–370 (2018)

    Article  Google Scholar 

  8. S. Baidya, V. Potdar, P.P. Ray, C. Nandi, Reviewing the opportunities, challenges, and future directions for the digitalization of energy. Energy Res. Soc. Sci. 81, 102243 (2021)

    Article  Google Scholar 

  9. R. Zafar, A. Mahmood, S. Razzaq, W. Ali, U. Naeem, K. Shehzad, Prosumer based energy management and sharing in smart grid. Renew. Sustain. Energy Rev. 82, 1675–1684 (2018)

    Article  Google Scholar 

  10. P. Weigel, M. Fischedick, Review and categorization of digital applications in the energy sector. Appl. Sci. 9(24), 5350 (2019)

    Article  Google Scholar 

  11. V. Marinakis, H. Doukas, J. Tsapelas, S. Mouzakitis, Á. Sicilia, L. Madrazo, S. Sgouridis, From big data to smart energy services: An application for intelligent energy management. Futur. Gener. Comput. Syst. 110, 572–586 (2020)

    Article  Google Scholar 

  12. E. Sarmas, N. Dimitropoulos, S. Strompolas, Z. Mylona, V. Marinakis, A. Giannadakis, A. Romaios, H. Doukas, A web-based building automation and control service, in 2022 13th International Conference on Information, Intelligence, Systems & Applications (IISA). (IEEE, 2022), pp. 1–6

    Google Scholar 

  13. A. Esmat, M. de Vos, Y. Ghiassi-Farrokhfal, P. Palensky, D. Epema, A novel decentralized platform for peer-to-peer energy trading market with blockchain technology. Appl. Energy 282, 116123 (2021)

    Article  Google Scholar 

  14. E. Sarmas, E. Spiliotis, V. Marinakis, T. Koutselis, H. Doukas, A meta-learning classification model for supporting decisions on energy efficiency investments. Energy Build. 258, 111836 (2022)

    Article  Google Scholar 

  15. E. Sarmas, E. Spiliotis, V. Marinakis, G. Tzanes, J.K. Kaldellis, H. Doukas, Ml-based energy management of water pumping systems for the application of peak shaving in small-scale islands. Sustain. Urban Areas 82, 103873 (2022)

    Google Scholar 

  16. A.B. Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado, S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila, F. Herrera, Explainable artificial intelligence (xai): concepts, taxonomies, opportunities and challenges toward responsible ai. Inf. Fusion 58, 82–115 (2020)

    Article  Google Scholar 

  17. C. Meske, E. Bunde, J. Schneider, M. Gersch, Explainable artificial intelligence: Objectives, stakeholders, and future research opportunities. Inf. Syst. Manag. 39(1), 53–63 (2022)

    Article  Google Scholar 

  18. E. Council, Fit for 55: The eu’s plan for a green transition (2020)

    Google Scholar 

  19. IEA: Renewables 2021: Analysis and forecasts to 2026 (2021)

    Google Scholar 

  20. P. Skaloumpakas, E. Spiliotis, E. Sarmas, A. Lekidis, G. Stravodimos, D. Sarigiannis, I. Makarouni, V. Marinakis, J. Psarras, A multi-criteria approach for optimizing the placement of electric vehicle charging stations in highways. Energies 15(24), 9445 (2022)

    Article  Google Scholar 

  21. M.Q. Raza, A. Khosravi, A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings. Renew. Sustain. Energy Rev. 50, 1352–1372 (2015)

    Article  Google Scholar 

  22. P. Bradley, M. Leach, J. Torriti, A review of the costs and benefits of demand response for electricity in the UK. Energy Policy 52, 312–327 (2013)

    Article  Google Scholar 

  23. C.W. Gellings, W.M. Smith, Integrating demand-side management into utility planning. Proc. IEEE 77(6), 908–918 (1989)

    Article  Google Scholar 

  24. R. Xiong, J. Cao, Q. Yu, Reinforcement learning-based real-time power management for hybrid energy storage system in the plug-in hybrid electric vehicle. Appl. Energy 211, 538–548 (2018)

    Article  Google Scholar 

  25. J. Duan, Z. Yi, D. Shi, C. Lin, X. Lu, Z. Wang, Reinforcement-learning-based optimal control of hybrid energy storage systems in hybrid ac-dc microgrids. IEEE Trans. Ind. Inf. 15(9), 5355–5364 (2019)

    Article  Google Scholar 

  26. G. Zsembinszki, C. Fernández, D. Vérez, L.F. Cabeza, Deep learning optimal control for a complex hybrid energy storage system. Buildings 11(5), 194 (2021)

    Article  Google Scholar 

  27. L. Fuhrimann, V. Moosavi, P.O. Ohlbrock P. D’acunto, Data-driven design: Exploring new structural forms using machine learning and graphic statics, in Proceedings of IASS Annual Symposia. vol. 2 in 1. International Association for Shell and Spatial Structures (IASS) (2018), pp. 1–8

    Google Scholar 

  28. D. Nagy, D. Lau, J. Locke, J. Stoddart, L. Villaggi, R. Wang, D. Zhao, D. Benjamin, Project discover: an application of generative design for architectural space planning, in Proceedings of the Symposium on Simulation for Architecture and Urban Design (2017), pp. 1–8

    Google Scholar 

  29. P. Geyer, S. Singaravel, Component-based machine learning for performance prediction in building design. Appl. Energy 228, 1439–1453 (2018)

    Article  Google Scholar 

  30. M. Huang, J. Ninić, Q. Zhang, Bim, machine learning and computer vision techniques in underground construction: current status and future perspectives. Tunn. Undergr. Space Technol. 108, 103677 (2021)

    Article  Google Scholar 

  31. I.K. Brilakis, L. Soibelman, Shape-based retrieval of construction site photographs. J. Comput. Civ. Eng. 22(1), 14–20 (2008)

    Article  Google Scholar 

  32. Z. Zhu, I. Brilakis, Parameter optimization for automated concrete detection in image data. Autom. Constr. 19(7), 944–953 (2010)

    Article  Google Scholar 

  33. C. Fan, Y. Sun, K. Shan, F. Xiao, J. Wang, Discovering gradual patterns in building operations for improving building energy efficiency. Appl. Energy 224, 116–123 (2018)

    Article  Google Scholar 

  34. S. Lu, W. Wang, C. Lin, E.C. Hameen, Data-driven simulation of a thermal comfort-based temperature set-point control with ashrae rp884. Build. Environ. 156, 137–146 (2019)

    Article  Google Scholar 

  35. K. Yan, L. Ma, Y. Dai, W. Shen, Z. Ji, D. Xie, Cost-sensitive and sequential feature selection for chiller fault detection and diagnosis. Int. J. Refrig 86, 401–409 (2018)

    Article  Google Scholar 

  36. J. Granderson, S. Touzani, S. Fernandes, C. Taylor, Application of automated measurement and verification to utility energy efficiency program data. Energy Build. 142, 191–199 (2017)

    Article  Google Scholar 

  37. N. Dimitropoulos, E. Sarmas, M. Lampkowski, V. Marinakis, A quantitative methodology to support local governments in climate change adaptation and mitigation actions, in International Symposium on Distributed Computing and Artificial Intelligence (Springer, 2023), pp. 99–108

    Google Scholar 

  38. E. Sarmas, N. Dimitropoulos, V. Marinakis, Z. Mylona, H. Doukas, Transfer learning strategies for solar power forecasting under data scarcity. Sci. Rep. 12(1), 14643 (2022)

    Article  Google Scholar 

  39. E. Sarmas, E. Spiliotis, E. Stamatopoulos, V. Marinakis, H. Doukas, Short-term photovoltaic power forecasting using meta-learning and numerical weather prediction independent long short-term memory models. Renew. Energy 216, 118997 (2023)

    Article  Google Scholar 

  40. E. Sarmas, N. Dimitropoulos, V. Marinakis, A. Zucika, H. Doukas, Monitoring the impact of energy conservation measures with artificial neural networks, in In ECEEE Summer Study (2022)

    Google Scholar 

  41. E. Sarmas, S. Strompolas, V. Marinakis, F. Santori, M.A. Bucarelli, H. Doukas, An incremental learning framework for photovoltaic production and load forecasting in energy microgrids. Electronics 11(23), 3962 (2022)

    Article  Google Scholar 

  42. E. Sarmas, E. Spiliotis, N. Dimitropoulos, V. Marinakis, H. Doukas, Estimating the energy savings of energy efficiency actions with ensemble machine learning models. Appl. Sci. 13(4), 2749 (2023)

    Article  Google Scholar 

  43. C. Tsolkas, E. Spiliotis, E. Sarmas, V. Marinakis, H. Doukas, Dynamic energy management with thermal comfort forecasting. Build. Environ. 237, 110341 (2023)

    Article  Google Scholar 

  44. P. Skaloumpakas, E. Sarmas, Z. Mylona, A. Cavadenti, F. Santori, V. Marinakis, Predicting thermal comfort in buildings with machine learning and occupant feedback, in 2023 IEEE International Workshop on Metrology for Living Environment (MetroLivEnv. (IEEE, 2023), pp. 34–39

    Google Scholar 

  45. T. Miller, Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019)

    Article  MathSciNet  Google Scholar 

  46. C.H. Tsai, J.M. Carroll, : Logic and pragmatics in ai explanation, in xxAI-Beyond Explainable AI: International Workshop, Held in Conjunction with ICML 2020, July 18, 2020, Vienna, Austria, Revised and Extended Papers. (Springer, 2022), pp. 387–396

    Google Scholar 

  47. T. Ngo, J. Kunkel, J. Ziegler, Exploring mental models for transparent and controllable recommender systems: a qualitative study, in Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization (2020), pp. 183–191

    Google Scholar 

  48. P. Hacker, J.H. Passoth, Varieties of ai explanations under the law. from the gdpr to the aia, and beyond, in xxAI-Beyond Explainable AI: International Workshop, Held in Conjunction with ICML 2020, July 18, 2020, Vienna, Austria, Revised and Extended Papers. (Springer, 2022), pp. 343–373

    Google Scholar 

  49. A.B. Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado, S. García, S. Gil-López, D. Molina, R. Benjamins et al., Explainable artificial intelligence (xai): concepts, taxonomies, opportunities and challenges toward responsible ai. Inf. fusion 58, 82–115 (2020)

    Article  Google Scholar 

  50. F.D. Davis, Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly (1989), pp. 319–340

    Google Scholar 

  51. I. Ajzen, The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 50(2), 179–211 (1991)

    Article  Google Scholar 

  52. R. Alroobaea, P.J. Mayhew, How many participants are really enough for usability studies? in 2014 Science and Information Conference. (IEEE, 2014), pp. 48–56

    Google Scholar 

  53. J. Sauro, J.R. Lewis, Quantifying the User Experience: Practical Statistics for User Research. (Morgan Kaufmann, 2016)

    Google Scholar 

  54. S. Aranganayagi, K. Thangavel, Clustering categorical data using silhouette coefficient as a relocating measure, in International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007), vol. 2 (2007), pp. 13–17

    Google Scholar 

  55. H.B. Zhou, J.T. Gao, Automatic method for determining cluster number based on silhouette coefficient, in Advanced Materials Research, vol. 951. (Trans Tech Publ, 2014), pp. 227–230

    Google Scholar 

  56. A. Likas, N. Vlassis, J.J. Verbeek, The global k-means clustering algorithm. Pattern Recognit. 36(2), 451–461 (2003)

    Article  Google Scholar 

  57. J. Shlens, A tutorial on principal component analysis (2014). arXiv:1404.1100

  58. E. Sarmas, M. Kleideri, A. Zučika, V. Marinakis, H. Doukas, Improving energy performance of buildings: dataset of implemented energy efficiency renovation projects in latvia. Data Brief 48, 109225 (2023)

    Article  Google Scholar 

  59. D.P. Panagoulias, M. Virvou, G.A. Tsihrintzis, Regulation and validation challenges in artificial intelligence-empowered healthcare applications - the case of blood-retrieved biomarkers. Knowledge-Based Software Engineering: 2022, in Proceedings of the 14th International Joint Conference on Knowledge-Based Software Engineering (JCKBSE 2022, Larnaca, Cyprus), Maria Virvou, Takuya Saruwatari, Lakhmi C. Jain 133 (2023)

    Google Scholar 

  60. D.P. Panagoulias, D.N. Sotiropoulos, G.A. Tsihrintzis, Nutritional biomarkers and machine learning for personalized nutrition applications and health optimization, in 2021 12th International Conference on Information, Intelligence, Systems & Applications (IISA). (IEEE, 2021), pp. 1–6

    Google Scholar 

  61. E. Sarmas, P. Xidonas, H. Doukas et al., Multicriteria Portfolio Construction with Python. (Springer, 2020)

    Google Scholar 

  62. P. Xidonas, H. Doukas, E. Sarmas, A python-based multicriteria portfolio selection dss. RAIRO-Oper. Res. 55, S3009–S3034 (2021)

    Article  MathSciNet  Google Scholar 

  63. S.M. Lundberg, S.I. Lee, A unified approach to interpreting model predictions. Advances in neural information processing systems 30 (2017)

    Google Scholar 

Download references

Acknowledgements

The work presented is based on research conducted within the framework of the project “Modular Big Data Applications for Holistic Energy Services in Buildings (MATRYCS)”, of the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 101000158 (https://matrycs.eu/), of the Horizon 2020 European Commission project BD4NRG under grant agreement no. 872613 (https://www.bd4nrg.eu/) and of the Horizon Europe European Commission project DigiBUILD under grant agreement no. 101069658 (https://digibuild-project.eu/). The authors wish to thank the Coopérnico team, whose contribution, helpful remarks and fruitful observations were invaluable for the development of this work. The content of the paper is the sole responsibility of its authors and does not necessary reflect the views of the EC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elissaios Sarmas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarmas, E., Panagoulias, D.P., Tsihrintzis, G.A., Marinakis, V., Doukas, H. (2024). An Explainable AI-Based Framework for Supporting Decisions in Energy Management. In: Doukas, H., Marinakis, V., Sarmas, E. (eds) Machine Learning Applications for Intelligent Energy Management. Learning and Analytics in Intelligent Systems, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-031-47909-0_1

Download citation

Publish with us

Policies and ethics