Skip to main content

Mathematical Treatment for Real-Time Vehicle Recognition Using Traditional Road Surveillance Cameras

  • Conference paper
  • First Online:
Proceedings of the Future Technologies Conference (FTC) 2023, Volume 3 (FTC 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 815))

Included in the following conference series:

  • 237 Accesses

Abstract

Intelligent transportation systems require advanced vehicle tracking and surveillance tools, but hardware upgrades such as sensors, radars, and high-resolution cameras may be economically unfeasible in some regions. This paper introduces a mathematical approach for extracting traffic information using only traditional stationary single-lens traffic cameras. The method features vehicle recognition and tracking, speed estimation, traffic condition awareness, and abnormal behavior detection. Though machine learning is used for vehicle detection, information extraction, and analysis rely on mathematical deductions. The method’s effectiveness provides a viable solution for medium-to-small scale transportation systems, supplementing existing surveillance measures. Implementing this approach significantly improves real-time traffic surveillance efficiency and reduces infrastructure upgrade costs, offering a practical, cost-effective solution for enhancing transportation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

     Throughout this paper, the DWL means one segment of the dashed white line; In contrast, the DWLs (plural) represent the overall dashed white line. Same rule applies to LAR as an uncountable noun. Thus, DWLs include numbers of DWL and numbers of LAR.

  2. 2.

     For the simplicity of repeatedly addressing, the term SVR is used only as the acronym of Same Vehicle Recognition in this paper, albeit otherwise commonly referred to as Support Vector Regression. Readers are hereby advised.

References

  1. Ahmadi, S.A., Ghorbanian, A., Mohammadzadeh, A.: Moving vehicle detection, tracking and traffic parameter estimation from a satellite video: a perspective on a smarter city. Int. J. Remote Sens. 40(22), 8379–8394 (2019)

    Article  Google Scholar 

  2. Anka, A.: YOLO v4: Optimal speed & accuracy for object detection (2020)

    Google Scholar 

  3. Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, vol. 61. Siam, Philadelphia (1998)

    Book  Google Scholar 

  4. Atkinson, K.E.: An Introduction to Numerical Analysis. Wiley, Hoboken (2008)

    Google Scholar 

  5. Bhatia, V., Jaglan, V., Kumawat, S., Siwach, V., Sehrawat, H.: Intellıgent transportatıon system applıcatıons: a traffıc management perspectıve. In: Raj, J.S., Palanisamy, R., Perikos, I., Shi, Y. (eds.) Intelligent Sustainable Systems. LNNS, vol. 213, pp. 419–433. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-2422-3_33

    Chapter  Google Scholar 

  6. Bochkovskiy, A., Wang, C.-Y., Mark Liao, H.-Y.: YOLOv4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  7. Dagli, R., Eken, S.: Deploying a smart queuing system on edge with intel openVINO toolkit. Soft. Comput. 25(15), 10103–10115 (2021)

    Article  Google Scholar 

  8. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

  9. Datondji, S.R.E., Dupuis, Y., Subirats, P., Vasseur, P.: A survey of vision-based traffic monitoring of road intersections. IEEE Trans. Intell. Transp. Syst. 17(10), 2681–2698 (2016)

    Article  Google Scholar 

  10. Falkenhagen, L.: Block-based depth estimation from image triples with unrestricted camera setup. In: Proceedings of First Signal Processing Society Workshop on Multimedia Signal Processing, pp. 280–285. IEEE (1997)

    Google Scholar 

  11. Federal Highway Administration, USDOT: Manual on Uniform Traffic Control Devices: For Streets and Highways. Federal Highway Administration, USDOT (2009)

    Google Scholar 

  12. Guerrero-Ibáñez, J., Zeadally, S., Contreras-Castillo, J.: Sensor technologies for intelligent transportation systems. Sensors 18(4), 1212 (2018)

    Article  Google Scholar 

  13. Jie, H., Zhang, X., Maybank, S.: Abnormal driving detection with normalized driving behavior data: a deep learning approach. IEEE Trans. Veh. Technol. 69(7), 6943–6951 (2020)

    Article  Google Scholar 

  14. Xing, H., et al.: A weakly supervised framework for abnormal behavior detection and localization in crowded scenes. Neurocomputing 383, 270–281 (2020)

    Article  Google Scholar 

  15. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  16. Kamencay, P., Benco, M., Mizdos, T., Radil, R.: A new method for face recognition using convolutional neural network. Adv. Electr. Electron. Eng. 15(4), 663–672 (2017)

    Google Scholar 

  17. Kotenko, I., Saenko, I., Lauta, O., Karpov, M., Kribel, K.: An approach to modeling of the security system of intelligent transport systems based on the use of flat graphs. In: Kovalev, S., Tarassov, V., Snasel, V., Sukhanov, A. (eds.) IITI 2021. LNNS, vol. 330, pp. 440–451. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-87178-9_44

    Chapter  Google Scholar 

  18. Li, M.Z.F.: The role of speed-flow relationship in congestion pricing implementation with an application to Singapore. Transp. Res. B Methodol. 36(8), 731–754 (2002)

    Article  Google Scholar 

  19. Maimaris, A., Papageorgiou, G.: A review of intelligent transportation systems from a communications technology perspective. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), pp. 54–59. IEEE (2016)

    Google Scholar 

  20. Maki, A., Nordlund, P., Eklundh, J.-O.: A computational model of depth-based attention. In: Proceedings of 13th International Conference on Pattern Recognition, vol. 4, pp. 734–739. IEEE (1996)

    Google Scholar 

  21. Nafrees, A.C.M., Sujah, A.M.A., Mansoor, C.: Smart cities: emerging technologies and potential solutions to the cyber security threads. In: 2021 5th International Conference on Electrical, Electronics, Communication, Computer Technologies and Optimization Techniques (ICEECCOT), pp. 220–228. IEEE (2021)

    Google Scholar 

  22. National Highway Traffic Safety Administration: Uniform Guidelines for State Highway Safety Programs. U.S. Department of Transportation, Uniform Guidelines for State Highway Safety Programs. U.S. Government Printing Office (2014)

    Google Scholar 

  23. Olsson, M.C.: Logarithmic geometry and algebraic stacks. In: Annales scientifiques de l’Ecole normale supérieure, vol. 36, pp. 747–791 (2003)

    Google Scholar 

  24. Redmon, J., Alexey, B.: DarkNet: Open source neural networks in C (YOLO-v4), April 2020. Accessed 01 July 2022

    Google Scholar 

  25. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  26. Navaas Roshan, A., Gokulapriyan, B., Siddarth, C., Kokil, P.: Adaptive traffic control with tinyML. In: 2021 Sixth International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), pp. 451–455. IEEE (2021)

    Google Scholar 

  27. Saiprasert, C., Pattara-Atikom, W.: Smartphone enabled dangerous driving report system. In: 2013 46th Hawaii International Conference on System Sciences, pp. 1231–1237. IEEE (2013)

    Google Scholar 

  28. Shahverdy, M., Fathy, M., Berangi, R., Sabokrou, M.: Driver behavior detection and classification using deep convolutional neural networks. Expert Syst. Appl. 149, 113240 (2020)

    Article  Google Scholar 

  29. Singh, S., Stern, S., Subramanian, R.: Not-in-traffic surveillance: child fatality and injury in nontraffic crashes-2008 to 2011 statistics. Technical report (2014)

    Google Scholar 

  30. Sylvester, K.: United States Pavement Markings. U.S. Department of Transportation, Federal Highway Administration, Office of Transportation Operations. U.S. Government Printing Office (2002)

    Google Scholar 

  31. Wang, C., Musaev, A., Sheinidashtegol, P., Atkison, T.: Towards detection of abnormal vehicle behavior using traffic cameras. In: Chen, K., Seshadri, S., Zhang, L.-J. (eds.) BIGDATA 2019. LNCS, vol. 11514, pp. 125–136. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23551-2_9

    Chapter  Google Scholar 

  32. Wang, H., Zhang, X.: Real-time vehicle detection and tracking using 3d lidar. Asian J. Control 24(3), 1459–1469 (2022)

    Article  Google Scholar 

  33. Wang, J., Su, L., Han, S., Song, D., Miao, F.: Towards safe autonomy in hybrid traffic: the power of information sharing in detecting abnormal human drivers behaviors

    Google Scholar 

  34. Wang, X., Wang, S., Chi, C., Zhang, S., Mei, T.: Loss function search for face recognition. In: International Conference on Machine Learning, pp. 10029–10038. PMLR (2020)

    Google Scholar 

  35. Wessel, P.: Department of Mathematics, The University of Utah. Cartesian linear projection, March 1999. Accessed 4 Apr 2022

    Google Scholar 

  36. Wessel, P.: Department of Mathematics, The University of Utah. Logarithmic projection, March 1999. Accessed 12 Apr 2021

    Google Scholar 

  37. Xie, L., Ahmad, T., Jin, L., Liu, Y., Zhang, S.: A new CNN-based method for multi-directional car license plate detection. IEEE Trans. Intell. Transp. Syst. 19(2), 507–517 (2018)

    Article  Google Scholar 

  38. Yao, W., et al.: On-road vehicle trajectory collection and scene-based lane change analysis: Part II. IEEE Trans. Intell. Transp. Syst. 18(1), 206–220 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, C., Atkison, T. (2023). Mathematical Treatment for Real-Time Vehicle Recognition Using Traditional Road Surveillance Cameras. In: Arai, K. (eds) Proceedings of the Future Technologies Conference (FTC) 2023, Volume 3. FTC 2023. Lecture Notes in Networks and Systems, vol 815. Springer, Cham. https://doi.org/10.1007/978-3-031-47457-6_8

Download citation

Publish with us

Policies and ethics