Skip to main content

Comparative Mechanical Analysis of PLA and ABS Materials in Filament and Resin Form

  • Conference paper
  • First Online:
New Trends in Engineering Research (CNNTech 2023)

Abstract

Additive manufacturing (AM), also known as 3D printing, represent technologies where the production of physical models with complex shapes is performed in a layer-by-layer manner, directly from the CAD model. With these processes, there is no need for additional tools or fixtures, and there is no excess material. There are seven different AM technologies, all utilizing different materials depending on the needed final part properties. Recent years were particularly significant for the development and advancement of polymer materials in AM. Among available technologies where polymer materials are used, this research covers extrusion-based Fused Deposition Modeling (FDM) and liquid resin photopolymerization technology called Digital Light Processing (DLP). Concerning the fact that these technologies process materials from different forms, the filament and resin form, the goal of this research was to compare the mechanical properties of two of the most widespread materials in AM, Acrylonitrile Butadiene Styrene (ABS) and PolyLactic Acid (PLA), in filament and resin form. Specimen geometry and test protocols followed the dedicated standards. For a comprehensive analysis tensile, compression, and (three-point) bending tests were utilized here, along with surface fracture 2D optical microscopy and Shore A hardness test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. ISO/ASTM 52900:2021: https://www.iso.org/obp/ui/#iso:std:iso-astm:52900:ed-2:v1:en. Accessed 18 May 2023

  2. Lipton, J.I., Cutler, M., Nigl, F., Cohen, D., Lipson, H.: Additive manufacturing for the food industry. Trends in Food Sci. Technol. 43(1), 114–123 (2015). https://doi.org/10.1016/j.tifs.2015.02.004

  3. Paoletti, I.: Mass customization with additive manufacturing: new perspectives for multi performative building components in architecture. Procedia Eng. 180, 1150–1159 (2017). https://doi.org/10.1016/j.proeng.2017.04.275

    Article  Google Scholar 

  4. Leal, R., et al.: Additive manufacturing tooling for the automotive industry. The Int. J. Adv. Manuf. Technol. 92, 1671–1676 (2017). https://doi.org/10.1007/s00170-017-0239-8

    Article  Google Scholar 

  5. Fu, H., Kaewunruen, S.: State-of-the-art review on additive manufacturing technology in railway infrastructure systems. J. Compos. Sci. 6, 7 (2022). https://doi.org/10.3390/jcs6010007

    Article  Google Scholar 

  6. Shapiro, A.A., Borgonia, J. P., Chen, Q.N., Dillon, R.P., Mc Enerney, B., Polit-Casillas, R., Soloway, L.: Additive manufacturing for aerospace flight applications. J. Spacecraft Rockets, 952–959 (2016). https://doi.org/10.2514/1.A33544

  7. Calignano, F., Galati, M., Iuliano, L., Minetola, P.: Design of additively manufactured structures for biomedical applications: a review of the additive manufacturing processes applied to the biomedical sector. J. Healthcare Eng. 2019, Article ID 9748212 (2019). https://doi.org/10.1155/2019/9748212

  8. Golubović, Z., Mitrović, A., Mitrović, N.: 3D printing in contemporary dentistry. In: Mitrovic N., Mladenovic G., Mitrovic A. (eds.) Experimental Research and Numerical Simulation in Applied Sciences. CNNTech 2022. Lecture Notes in Networks and Systems, vol. 564, Springer, pp. 213–232 (2023). https://doi.org/10.1007/978-3-031-19499-3_12

  9. Jamróz, W., Szafraniec, J., Kurek, M., Jachowicz, R.: 3D printing in pharmaceutical and medical applications—recent achievements and challenges. Pharm. Res. 35, 176 (2018). https://doi.org/10.1007/s11095-018-2454-x

    Article  Google Scholar 

  10. Jakovljević, P., Dihovični, Đ, Bijelić, I., Kreculj, D., Ratković Kovačević, N.: Experiences in 3D printing applied in education. Struct. Integrity and Life 22(1), 43–47 (2021)

    Google Scholar 

  11. Ailinei, I.I., Galațanu, S.V., Marșavina, L.: Influence of deposition direction on vibration characteristics of 3D printed ABS test specimens. Struct. Integrity Life 22(1), 25–28 (2022)

    Google Scholar 

  12. Gao, W., Zhang, Y., Ramanujana, D., Ramani, K, Chenc, Y., Williams, C.B., Wang, C.C.L., Shina, Y.C., Zhang, S., Zavattieri, P.D.: The status, challenges, and future of additive manufacturing in engineering. Comput.-Aided Design 69, 65–89 (2015). https://doi.org/10.1016/j.cad.2015.04.001

  13. Golubović, Z., Travica, M., Trajković, I., Petrović, A., Misković, Ž., Mitrović, N.: Investigation of thermal and dimensional behavior of 3-D printed materials using thermal imaging and 3-D scanning. Thermal Sci. 27, 21–31 (2023). ISSN: 0928-4931. https://doi.org/10.2298/TSCI2301021G

  14. Rieder, H., Spies, M., Bamberg, J., Henkel, B.: On- and offline ultrasonic characterization of components built by SLM additive manufacturing (2016). https://doi.org/10.1063/1.4940605

  15. Honarvar, F., Varvani-Farahani, A.: A review of ultrasonic testing applications in additive manufacturing: defect evaluation, material characterization, and process control. ultrasonics, 106227 (2020). https://doi.org/10.1016/j.ultras.2020.106227

  16. Letcher, T., Waytashek, M.: Material property testing of 3D-printed specimen in PLA on an entry-level 3D printer. In: Proceedings of the ASME 2014 International Mechanical Engineering Congress & Exposition (IMECE2014), Montreal (2014)

    Google Scholar 

  17. Dizon, J.R.C., Espera, A.H., Chen, Q., Advincula, R.C.: Mechanical characterization of 3D-printed polymers. Addit. Manuf. 20, 44–67 (2018). https://doi.org/10.1016/j.addma.2017.12.002

    Article  Google Scholar 

  18. Schnittker, K., Arrieta, E., Jimenez, X., Espalin, D., Wicker, R.B., Roberson, D.A.: Integrating digital image correlation in mechanical testing for the materials characterization of big area additive manufacturing feedstock. Addit. Manuf. 26, 129–137 (2019). https://doi.org/10.1016/j.addma.2018.12.016

    Article  Google Scholar 

  19. Trajković, I., Milosević, M., Travica. M., Rakin, M., Mladenović, G., Kudrjavceva, L.J., Međo, B.: Novel method for measurement of pipeline materials fracture resistance-examination on selective laser sintered cylindrical specimens. Sci. Sintering 54(3), 373–386 (2022). https://doi.org/10.2298/SOS2203373T

  20. Neikter, M., Åkerfeldt, P., Pederson, R., Antti, M.-L., Sandell, V.: Microstructural characterization and comparison of Ti-6Al-4V manufactured with different additive manufacturing processes. Mater. Charact. (2018). https://doi.org/10.1016/j.matchar.2018.02.003

    Article  Google Scholar 

  21. Parandoush, P., Lin, D.: A review on additive manufacturing of polymer-fiber composites. Compos. Struct. 182, 36–53 (2017). https://doi.org/10.1016/j.compstruct.2017.08

    Article  Google Scholar 

  22. Jevtić, I., Mladenović, G., Milošević, M., Milovanović, A., Trajković, I., Travica, M.: Dimensional accuracy of parts obtained by Sls technology. Struct. Integrity Life 22(3), 288–329 (2022)

    Google Scholar 

  23. Yang, Y., Li, L., Zhao, J.: Mechanical property modeling of photosensitive liquid resin in stereolithography additive manufacturing: Bridging degree of cure with tensile strength and hardness. Mater. Des. 162, 418–428 (2019). https://doi.org/10.1016/j.matdes.2018.12.009

    Article  Google Scholar 

  24. Ngo, T.D., Kashan, A., Imbalzano, G., Nguyen, K.T.Q., Hui, D.: Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos. Part B Eng. 143, 172–196 (2018). https://doi.org/10.1016/j.compositesb.2018.02.012

    Article  Google Scholar 

  25. Milovanović, A., Golubović, Z., Babinský, T., Šulák, I., Mitrović, A.: Tensile properties of polypropylene additively manufactured by FDM. Struct. Integrity Life 22(3), 305–308 (2022)

    Google Scholar 

  26. Amendola, C., et al.: Optical characterization of 3D printed PLA and ABS filaments for diffuse optics applications. PLoS ONE 16(6), e0253181 (2021). https://doi.org/10.1371/journal.pone.0253181

    Article  Google Scholar 

  27. Solomon, I.J., Sevvel, P., Gunasekaran, J.: A review on the various processing parameters in FDM. Mater. Today Proc. 37(2), 509–514 (2021). https://doi.org/10.1016/j.matpr.2020.05.484

    Article  Google Scholar 

  28. Sood, A.K., Ohdar, R.K., Mahapatra, S.S.: Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater. Des., 31(1), 287e295 (2010). https://doi.org/10.1016/j.matdes.2009.06.016. Elsevier Ltd.

  29. Doshi, M., Mahale, A., Singh, S.K., Deshmukh, S.: Printing parameters and materials affecting mechanical properties of FDM-3D printed parts: perspective and prospects. Mater. Today: Proc. 50, 2269–2275 (2022). https://doi.org/10.1016/j.matpr.2021.10.003

    Article  Google Scholar 

  30. Lai, J., Wang, C., Wang, M.: 3D printing in biomedical engineering: processes, materials, and applications. Appl. Phys. Rev. 8, 021322 (2021). https://doi.org/10.1063/5.0024177

  31. Shah, D.M., Morris, J., Plaisted, T.A., Amirkhizi, A.V., Hansen, C.J.: Highly filled resins for DLP-based printing of low density, high modulus materials. Addit. Manuf. (2020). https://doi.org/10.1016/j.addma.2020.101736

    Article  Google Scholar 

  32. Wu, D., Zhao, Z., Zhang, Q., H. Qi, H.J., Fang, D.: Mechanics of shape distortion of DLP 3D printed structures during UV post-curing. Soft Matter. 15, 6151–6159 (2019). https://doi.org/10.1039/C9SM00725C

  33. Kadry, H., Wadnap, S., Xu, C., Ahsan, F.: Digital light processing (DLP) 3D-printing technology and photoreactive polymers in fabrication of modified-release tablets. Eur. J. Pharm. Sci. 135, 60–67 (2019). https://doi.org/10.1016/j.ejps.2019.05.008

    Article  Google Scholar 

  34. Milovanović, A., et al.: Influence of printing parameters on the eligibility of plain-strain fracture toughness results for PLA polymer. Procedia Struct. Integrity 41, 290–297 (2022). https://doi.org/10.1016/j.prostr.2022.05.034

    Article  Google Scholar 

  35. Milovanović, A., et al.: Comparative analysis of printing parameters effect on mechanical properties of natural PLA and advanced PLA-X material. Procedia Struct. Integrity 28, 1963–1968 (2020). https://doi.org/10.1016/j.prostr.2020.11.019

    Article  Google Scholar 

  36. Milovanović, A., Milošević, M., Mladenović, G., Likozar, B., Čolić, K., Mitrović, N.: Experimental dimensional accuracy analysis of reformer prototype models produced by FDM and SLA 3D printing technology. In: Mitrović, N., Milošević, M., Mladenović, G. (ed.) Experimental and Numerical Investigations in Materials Science and Engineering, pp. 84–95. Springer, Cham (2019)

    Google Scholar 

  37. Lee, J.T., Kim, M.W., Song, Y.S., Kang, T.J., Youn, J.R.: Mechanical properties of denim fabric reinforced poly(lactic acid). Fibers Polym. 11, 60–66 (2010). https://doi.org/10.1007/s12221-010-0060-6

    Article  Google Scholar 

  38. Bajpai, P.K., Singh, I., Madaan, J.: Tribological behavior of natural fiber reinforced PLA composites. Wear 297(1–2), 829–840 (2013). https://doi.org/10.1016/j.wear.2012.10.019

    Article  Google Scholar 

  39. Baich, L., Manogharan, G., Marie, H.: Study of infill print design on production cost-time of 3D printed ABS parts. Int. J. Rapid Manuf. 5(3/4), 308 (2015). https://doi.org/10.1504/IJRAPIDM.2015.074809

    Article  Google Scholar 

  40. Popović, M., Pjević, M., Milovanović, A., Mladenović, G., Milošević, M.: Printing parameter optimization of PLA material concerning geometrical accuracy and tensile properties relative to FDM process productivity. J. Mech. Sci. Technol. 37(1) (2023). https://doi.org/10.1007/s12206-023-0113-6

  41. Dudescu, C., Botean, A., Hardau, M.: Thermal expansion coefficient determination of polymeric materials using digital image correlation. Materiale Plastice 50(1) (2013)

    Google Scholar 

  42. Kafle, A., Luis, E., Silwal, R., Pan, H.M., Shrestha, P.L., Bastola, A.K.: 3D/4D printing of polymers: fused deposition modelling (FDM), selective laser sintering (SLS), and stereolithography (SLA). Polymers 13(18), 3101 (2021). https://doi.org/10.3390/polym13183101

    Article  Google Scholar 

  43. Drumright, R.E., Gruber, P.R., Henton, D.E.: Polylactic acid technology. Adv. Mater. 12(23), 1841–1846 (2000). https://doi.org/10.1002/1521-4095(200012)12:23%3c1841::aid-adma1841%3e3.0.co;2-e

    Article  Google Scholar 

  44. Lipson, H., Kurman, M.: Fabricated: the new world of 3D printing. Wiley (2013)

    Google Scholar 

  45. Li, N., Li, Y., Liu, S.: Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing. J. Mater. Process. Technol. 238, 218–225 (2016). https://doi.org/10.1016/j.jmatprotec.2016.07.025

    Article  Google Scholar 

  46. Getme, A.S., Patel, B.: A review: bio-fiber’s as reinforcement in composites of polylactic acid (PLA). Mater. Today: Proc. 26, 2116–2122 (2020). https://doi.org/10.1016/j.matpr.2020.02.457

    Article  Google Scholar 

  47. Moore, J.D.: Acrylonitrile-butadiene-styrene (ABS)-a review. Composites 4(3), 118–130 (1973)

    Article  MathSciNet  Google Scholar 

  48. Wypych, G.: Odor in relation to different polymers. handbook of odors in materials, ChemTec Publishing, Elsevier, pp. 73–99 (2013). https://doi.org/10.1016/B978-1-895198-51-5.50010-3

  49. Poyraz, O.: Influence of build direction and post processes on the material and part attributes of hard. Mat. Res. 26 (2023). https://doi.org/10.1590/1980-5373-MR-2022-0362

  50. Hanon, M.M., Zsidai, L.: Sliding surface structure comparison of 3D printed polymers using FDM and DLP technologies. IOP Conf. Ser.: Mater. Sci. Eng. 749, 012015 (2020). https://doi.org/10.1088/1757-899X/749/1/012015

  51. Berman, B.: 3-D printing: the new industrial revolution. Bus. Horiz. 55, 155–162 (2012). https://doi.org/10.1016/j.bushor.2011.11.003

    Article  Google Scholar 

  52. Kumar, N., Kumar Jain, P., Tandon, P., Pandey, P.M.: Extrusion-based additive manufacturing process for producing flexible parts. J. Braz. Soc. Mech. Sci. Eng. 40, 143 (2018). https://doi.org/10.1007/s40430-018-1068-x(0123

    Article  Google Scholar 

  53. Lovo, J.F.P., de Camargoa, I.L., Erberelia, R., Moraisa, M.M., Fortulana, C.A.: Vat photopolymerization additive manufacturing resins: analysis and case study. Mater. Res. 23(4), e20200010 (2020). https://doi.org/10.1590/1980-5373-MR-2020-0010

    Article  Google Scholar 

  54. Singh, R., Trivedi, A., Singh, S.: Experimental investigation on shore hardness of barrel-finished FDM patterns. Sādhanā 42(9), 1579–1584 (2017). https://doi.org/10.1007/s12046-017-0709-6

    Article  Google Scholar 

  55. Monzón, M., Ortega, Z., Hernández, A., Paz, R., Ortega, F.: Anisotropy of photopolymer parts made by digital light processing. Materials 10(1), 64 (2017). https://doi.org/10.3390/ma10010064

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia by Contract No. 451–03-47/2023–01/ 200105 from 03.02.2023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Božica Bojović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bojović, B. et al. (2024). Comparative Mechanical Analysis of PLA and ABS Materials in Filament and Resin Form. In: Mitrovic, N., Mladenovic, G., Mitrovic, A. (eds) New Trends in Engineering Research. CNNTech 2023. Lecture Notes in Networks and Systems, vol 792. Springer, Cham. https://doi.org/10.1007/978-3-031-46432-4_10

Download citation

Publish with us

Policies and ethics