Skip to main content

Obstetric Ultrasound Modelling and Analysis with Fractal Interpolation Methods

  • Chapter
  • First Online:
Current and Future Trends in Health and Medical Informatics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1112))

  • 173 Accesses

Abstract

This study focuses on modelling and analysis of obstetric ultrasound by using fractal interpolation. Firstly, a new way of representing ultrasounds achieving remarkable compression ratios while maintaining the quality of the original images is presented. Then, based on this representation, the possibility of grouping ultrasounds as well as the automatic detection of points of interest in them with the aim of diagnosis is examined. The experimental results indicate that fractal interpolation is a feasible and effective approach to this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Ali, T.G. Clarkson, Using linear fractal interpolation functions to compress video images. Fractals 2(3), 417–421 (1994)

    Article  MATH  Google Scholar 

  2. M. Ali, X. Meng, T.G. Clarkson, J.G. Taylor, “Using fractal interpolation function encoded ultrasonic signals to train a neural network”, IEE, 5/1–5/3 (1995)

    Google Scholar 

  3. M.F. Barnsley, Fractal functions and interpolation. Constr. Approx. 2, 303–329 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. M.F. Barnsley, Fractals everywhere, 3rd ed., Dover Publications, Inc. (2012)

    Google Scholar 

  5. M.F. Barnsley, S. Demko, Iterated function systems and the global construction of fractals. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 399(1817), 243–275 (1985)

    Google Scholar 

  6. O.I. Craciunescu, S.K. Das, J.M. Poulson, T.V. Samulski, Three-dimensional tumor perfusion reconstruction using fractal interpolation functions. IEEE Trans. Biomed. Eng. 48(4), 462–473 (2001)

    Article  Google Scholar 

  7. V. Drakopoulos, Fractal-based image encoding and compression techniques, Commun. – Scientific Letters of the University of Žilina 15(3), 48–55 (2013)

    Google Scholar 

  8. K.J. Falconer, Fractal geometry: mathematical foundations and applications, 3rd edn. (Wiley, Chichester, 2014)

    MATH  Google Scholar 

  9. D.P. Ferro, M.A. Falconi, R.L. Adam, M.M. Ortega, C.P. Lima, C.A. de Souza, I. Lorand-Metze, K. Metze, Fractal characteristics of May-Grünwald-Giemsa stained chromatin are independent prognostic factors for survival in multiple myeloma. PLoS ONE 6(6), e20706 (2011)

    Article  Google Scholar 

  10. J.E. Hutchinson, Fractals and self similarity. Indiana Univ. Math. J. 30(5), 713–747 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  11. F.E. Lennon, G.C. Cianci, N.A. Cipriani, T.A. Hensing, H.J. Zhang, C.T. Chen, S.D. Murgu, E.E. Vokes, M.W. Vannier, R. Salgia, Lung cancer-a fractal viewpoint. Nat. Rev. Clin. Oncol. 12(11), 664–675 (2015)

    Article  Google Scholar 

  12. P. Manousopoulos, V. Drakopoulos, T. Theoharis, Curve fitting by fractal interpolation. Trans. Comput. Sci. 1, 85–103 (2008)

    MathSciNet  MATH  Google Scholar 

  13. P. Manousopoulos, V. Drakopoulos, T. Theoharis, Parameter identification of 1D fractal interpolation functions using bounding volumes. J. Comput. Appl. Math. 233(4), 1063–1082 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Manousopoulos, V. Drakopoulos, T. Theoharis, Parameter identification of 1D recurrent fractal interpolation functions with applications to imaging and signal processing. J. Mathem. Imaging Vision 40(2), 162–170 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Manousopoulos, V. Drakopoulos, T. Theoharis, P. Stavrou, Effective representation of 2D and 3D data using fractal interpolation, in Proceedings of International Conference on Cyberworlds, pp. 457–464. IEEE Computer Society (2007)

    Google Scholar 

  16. P.R. Massopust, Fractal functions, fractal surfaces and wavelets (Academic Press, San Diego, CA, 1994)

    MATH  Google Scholar 

  17. D.S. Mazel, M.H. Hayes, Hidden-variable fractal interpolation of discrete sequences, in Proc. Int. Conf. Acoust., Speech, Signal Processing, pp. 3393–3396 (1991)

    Google Scholar 

  18. D.S. Mazel, M.H. Hayes, Using iterated function systems to model discrete sequences. IEEE Trans. Signal Process. 40(7), 1724–1734 (1992)

    Article  MATH  Google Scholar 

  19. D.S. Mazel, Representation of discrete sequences with three-dimensional iterated function systems. IEEE Trans. Signal Process. 42(11), 3269–3271 (1994)

    Article  Google Scholar 

  20. K. Metze, R. Adam, J.B. Florindo, The fractal dimension of chromatin—a potential molecular marker for carcinogenesis, tumor progression and prognosis. Expert Rev. Mol. Diagn. 19(4), 299–312 (2019)

    Article  Google Scholar 

  21. C.M. Păcurar, B.R. Necula, An analysis of COVID-19 spread based on fractal interpolation and fractal dimension. Chaos, Solitons Fractals 139, 110073 (2020)

    Article  MathSciNet  Google Scholar 

  22. A.I. Penn, M.H. Loew, Estimating fractal dimension of medical images, Proceedings of SPIE—The International Society for Optical Engineering, 2710 (1996)

    Google Scholar 

  23. A.I. Penn, M.H. Loew, Fractal dimension of low-resolution medical images, Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 3, pp. 1163–1165 (1996)

    Google Scholar 

  24. A.I. Penn, M.H. Loew, Estimating fractal dimension with fractal interpolation function models. IEEE Trans. Med. Imaging 16(6), 930–937 (1997)

    Article  Google Scholar 

  25. A.I. Penn, L. Bolinger, M.D. Schnall, M.H. Loew, Discrimination of MR images of breast masses with fractal-interpolation function models. Acad. Radiol. 6(3), 156–163 (1999)

    Article  Google Scholar 

  26. D.P. Popescu, C. Flueraru, Y. Mao, S. Chang, M.G. Sowa, Signal attenuation and box-counting fractal analysis of optical coherence tomography images of arterial tissue. Biomed. Opt. Express 1(1), 268–277 (2010)

    Article  Google Scholar 

  27. J.R. Price, M.H. Hayes, Resampling and reconstruction with fractal interpolation functions. IEEE Signal Process. Letters 5(9), 228–230 (1998)

    Article  Google Scholar 

  28. S. Tălu, Fractal analysis of normal retinal vascular network. Oftalmologia 55(4), 11–16 (2011)

    Google Scholar 

  29. J.L. Véhel, K. Daoudi, E. Lutton, Fractal modeling of speech signals. Fractals 2(3), 379–382 (1994)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Athanasia Karamani, M.D. for her helpful advice on various technical and medical issues examined in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasileios Drakopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Drakopoulos, V., Manousopoulos, P. (2023). Obstetric Ultrasound Modelling and Analysis with Fractal Interpolation Methods. In: Daimi, K., Alsadoon, A., Seabra Dos Reis, S. (eds) Current and Future Trends in Health and Medical Informatics. Studies in Computational Intelligence, vol 1112. Springer, Cham. https://doi.org/10.1007/978-3-031-42112-9_10

Download citation

Publish with us

Policies and ethics