Skip to main content

Predictive Processing and Extended Consciousness: Why the Machinery of Consciousness Is (Probably) Still in the Head and the DEUTS Argument Won’t Let It Leak Outside

  • Chapter
  • First Online:
Situated Cognition Research

Part of the book series: Studies in Brain and Mind ((SIBM,volume 23))

  • 272 Accesses

Abstract

Recently, Kirchhoff and Kiverstein have argued that the extended consciousness thesis, namely the claim that the material vehicles of consciousness extend beyond our heads, is entirely compatible with, and actually mandated by, a correct interpretation of the predictive processing framework. To do so, they rely on a potent argument in favor of the extended consciousness thesis, namely the Dynamical Entanglement and Unique Temporal Signature (DEUTS) argument. Here, we will critically examine Kirchhoff and Kiverstein’s endeavor, arguing for the following three claims. First, we will claim that Kirchhoff and Kiverstein’s emphasis on culture and cultural practices does not help them substantiate the extended consciousness thesis. Secondly, we will argue that the way in which Kirchhoff and Kiverstein formalize the boundaries of a subject’s conscious mind is inadequate, as it yields conclusions running counter some of their assumptions. Lastly, we will argue that the DEUTS argument does not establish the extended consciousness thesis, as it licenses a phenomenal bloat objection which is exactly analogous to the “cognitive bloat” objection to the extended mind thesis. We will thus conclude that Kirchhoff and Kiverstein’s proposed marriage between the extended consciousness thesis and predictive processing fails, and that, contrary to a popular opinion, DEUTS is not a strong argument in favor of the extended consciousness thesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Importantly, when issues regarding CVE are left aside, PP and sensorimotor enactivism have a far less hostile relation both conceptually (e.g. Vázquez, 2020) and empirically (e.g. Laflaquiere, 2017; Leinweber et al., 2017).

  2. 2.

    For the most up-to-date review of the formal aspects of the Free-energy Principle, see Parr et al. (2022)

  3. 3.

    There is now a vast philosophical literature on Markov Blankets, investigating how this conception of Markov Blankets is removed from the one relevant in machine learning and whether Markov Blankets should be conceived as objective features of biological systems or just as modeling tools (Andrews, 2021; Raja et al., 2021; Bruineberg et al., 2022). Here, we will assume for the sake of discussion that the realistic reading is correct, as it seems the one espoused by Kirchhoff and Kiverstein (2019a, 2019b). See also (Facchin, 2021, 2022; Menary & Gillett, 2020, 2022) for lengthy and sustained critical analyses of the role Markov Blankets may play in the vehicle externalism debate.

  4. 4.

    Notice that in more traditional theories of motor control such a role is played by forward models (also called motor emulators), which have already been used to operationalize sensorimotor contingencies (e.g. Maye & Engel, 2013).

  5. 5.

    There are other ways to formalize the temporal thickness of a model. One is simply that of observing its hierarchical structure, in which hierarchically higher layers generate predictions over longer timescales, and are thus temporally thicker than hierarchically lower ones. But this way of proceeding seems to apply only to hierarchically structured internal (brain-like) models (e.g. Tani, 2016, Ch. 9–10). Hence, it would beg the question against Kirchhoff and Kiverstein (2019a, p. 55) understanding of models. Another way to formalize the temporal thickness of a model may be in terms of expected free energy (Corcoran et al., 2020): roughly, the free-energy expected in the future, after active inference has been performed. However, expected free-energy might not accurately model the free-energy expected in the future, and hence it might prove inadequate to capture the temporal thickness of a model (Millidge et al., 2021). We rely on Friston’s (2018) heuristic to avoid these problems.

  6. 6.

    An order parameter (or collective variable) is a variable describing the behavior of the components of the entire system. See (Kelso, 1995, Ch. 1 and 2) for a useful introduction.

  7. 7.

    Notice that here we are dealing with surprisal. Free-energy can be minimized in other ways too, as indicated above.

  8. 8.

    Notice, importantly, that sensory and active states influence each other, and are thus coupled. This, on Kirchhoff and Kiverstein’s (2019a, p. 69) view, allows Markov Blankets to capture the idea of sensorimotor contingencies.

  9. 9.

    To be fair to Bruineberg et al. (2018b) we wish to point out that they do not make a similar conclusion about Markov Blankets. Still, it seems to us that such a conclusion follows, if one accepts that free-energy minimizing systems must be enclosed by Markov Blankets.

  10. 10.

    A possible worry here is that constraints are typically described as non-causal (e.g. Lange, 2017). Were constraints to be non-causal, Kirchhoff and Kiverstein’s coupling based argument would be in danger. However, it is possible to understand constraints as causal (cf. Ross, 2020), and that seems sufficient to rescue Kirchhoff and Kiverstein’s argument.

  11. 11.

    Importantly, the environmental duplication need not be total:only the environmental factors with which S is dynamically entangled need to be duplicated in TS. Non-phenomenology-shaping aspects of the environment might still systematically differ.

  12. 12.

    To our knowledge, Kirchhoff and Kiverstein do not provide an explicit definition of cultural practices. However, it seems that they interpret cultural practices as relatively stable, socially regimented, ways of interaction, which induce a relatively stable sensory flow to which an agent can attune its expectations (cfr. Kirchhoff & Kiverstein, 2020). This way of understanding cultural practices might derive from Kiverstein’s past work on the skilled intentionality framework, which explicitly understands practices as “stable ways of doing things” (Rietveld & Kiverstein, 2014; see also Rietveld et al., 2018 for a presentation of the framework). Many thanks to a colleague for having pointed this out.

  13. 13.

    Notice that, according to Kirchhoff and Kiverstein, this is exactly the role that the “wider” Markov Blanket should play in cases of dynamical entanglement.

  14. 14.

    We won’t, for example, discuss in details Kirchhoff and Kiverstein’s complex proposal of a diachronic account of constitution, and we have glossed over a variety of themes explored in Kirchhoff and Kiverstein’s book.

  15. 15.

    One could challenge this verdict, arguing that many external signs (e.g. traffic lights, stop signs, etc.) do play a role in settling our expectations about the precision of the incoming sensory signals, thereby functioning like a vehicle controlling our precision estimates (see Clark, 2016, Ch. 8 and 9). We doubt, however, that Kirchhoff and Kiverstein can leverage such a challenge against us. This is because this case for vehicle externalism about precision estimation is built upon a parity argument for vehicle externalism (cfr. Constant et al., 2019a, pp. 16–18). But Kirchhoff and Kiverstein (2019a, Ch. 1) do not endorse such a parity principle based form of vehicle externalism, and are in fact quite critical of it.

  16. 16.

    Many thanks to two colleagues for discussion on these issues.

  17. 17.

    Similar arguments for the essential extendedness of cognitive capacities are provided in (Noë, 2004, pp. 110–115) and (Hurley, 2010, pp. 138–143).

  18. 18.

    This holds true also in some dynamical models (e.g. Schmidt & Richardson, 2008; Chemero, 2009, pp. 85–98). Intriguingly, (Kirchhoff et al., 2018) seem to point to a different, more demanding, notion of coupling. However, as far as we can see, such a notion of coupling is still lacking an operationalization.

  19. 19.

    Recall that, in this context, “model” simply refers to the internal states of a Markov Blanket.

  20. 20.

    One might object that Kirchhoff and Kiverstein resort to Markov Blankets only to formalize the boundaries of the mind, which need not coincide with the boundaries of the conscious mind. Yet, Kirchhoff and Kiverstein (2019a, p. 104) take the machinery PP describes to be the physical machinery of consciousness. And Markov Blankets presumably individuate the boundaries of that machinery. It is also worth noting that Kirchhoff and Kiverstein (2019a, pp. 62–63) introduce Markov Blankets to deal with Chalmers’s (2019) argument against CVE. It thus seems natural to think that, in Kirchhoff and Kiverstein’s view, Markov Blankets should identify the boundaries of the conscious mind.

  21. 21.

    We chose this example because Kirchhoff and Kiverstein (2020, p. 12) clearly state that they do not wish to consider oxygen as a constituent of the phenomenal machinery.

  22. 22.

    Kaplan’s (2012) mutual manipulability criterion is another criterion that relies on counterfactual interventions to tell apart the genuine constituents of a subject’s mental machinery from factors that merely causally impacing it. Importantly, however, Kaplan’s criterion requires at least two counterfactual interventions: a “bottom-up” intervention on the putative vehicle and a “top-down” intervention on the relevant (allegedly extended) cognitive phenomenon. Kirchhoff and Kiverstein, in contrast, seem only to require “bottom up” interventions on the putative vehicle. So, Kirchhoff and Kiverstein’s criterion is distinct from Kaplan’s.

  23. 23.

    To be fair, in that paper Kirchhoff and Kiverstein do not deal with CVE directly, but only with cognitive vehicle externalism. However, since Kirchhoff and Kiverstein (2019a, p. 104) take the PP explanations of cognitive phenomena to be also an account of phenomenal consciousness, the argument they offer to block the cognitive bloat should also block the consciousness bloat.

  24. 24.

    So much so, that there can be interoceptive perceptual illusions; see (Iodice et al., 2019) for a nice example.

  25. 25.

    Facchin (2021, pp. 15–24) expands on this line of argument in the context of vehicle externalism about cognition, and deflects several intuitive objections to it.

References

  • Adams, R. A., Shipp, S., & Friston, K. J. (2013). Predictions, not commands. Active inference in the motor cortex. Brain Structure and Function, 218(3), 611–643.

    Article  Google Scholar 

  • Allen-Hermanson, S. (2013). Superdupersizing the mind: Extended cognition and the persistence of cognitive bloat. Philosophical Studies, 164(3), 791–806.

    Article  Google Scholar 

  • Andrews, M. (2021). The math is not the territory. Biology and Philosophy, 36(6), 1–19.

    Google Scholar 

  • Baltieri, M., & Buckley, C. L. (2019). Generative models as parsimonious descriptions of sensorimotor loops. Behavioral and Brain Sciences, 42, e218. https://doi.org/10.1017/S0140525X19001353

    Article  Google Scholar 

  • Blake, R., Brascamp, J., & Heeger, D. J. (2014). Can binocular rivalry reveal the neural correlates of consciousness? Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1641), 20130211.

    Article  Google Scholar 

  • Bocanegra, B. R. (2019). Intelligent problem solvers externalize cognitive operations. Nature Human Behavior, 3(2), 136–142.

    Article  Google Scholar 

  • Bruineberg, J. (2017). Active inference and the primacy of the “I can”. In T. Metzinger & W. Wiese (Eds.), Philosophy and predictive processing (Vol. 5, pp. 1–18). The MIND Group.

    Google Scholar 

  • Bruineberg, J., & Rietveld, E. (2014). Self-organization, free-energy minimization, and an optimal grip on a field of affordances. Frontiers in Human Neuroscience, 8, 599.

    Article  Google Scholar 

  • Bruineberg, J., Kiverstein, K., & Rietveld, E. (2018a). The anticipating brain is not a scientist: The free-energy principle from an ecological-enactive perspective. Synthese, 195(6), 2417–2444.

    Article  Google Scholar 

  • Bruineberg, J., Rietveld, E., Parr, T., van Maanen, L., & Friston, K. J. (2018b). Free-energy minimization in joint agent environment systems: A niche construction perspective. Journal of Theoretical Biology, 455, 161–178.

    Article  Google Scholar 

  • Bruineberg, J., Dolega, K., Dewhurst, J., & Baltieri, M. (2022). The emperor’s new Markov blankets. Behavioral and Brain Sciences, 45(183), 1–76.

    Google Scholar 

  • Buckley, C. L., Kim, C. S., McGregor, S., & Seth, A. K. (2017). The free-energy principle for action and perception: A mathematical review. Journal of Mathematical Psychology, 81, 55–79.

    Article  Google Scholar 

  • Chalmers, D. J. (2000). What is a neural correlate of consciousness? In T. Metzinger (Ed.), Neural correlates of consciousness (pp. 17–39). MIT Press.

    Google Scholar 

  • Chalmers, D. (2019). Extended cognition and extended consciousness. In M. Colombo, E. Irvine, & M. Stapleton (Eds.), Andy Clark and his critics (pp. 7–20). Oxford University Press.

    Google Scholar 

  • Chemero, A. (2009). Radical embodied cognitive science. The MIT Press.

    Book  Google Scholar 

  • Clark, A. (2008). Supersizing the Mind. Oxford University Press.

    Google Scholar 

  • Clark, A. (2009). Spreading the joy? Why the machinery of consciousness is (probably) still in the head. Mind, 118(472), 963–993.

    Article  Google Scholar 

  • Clark, A. (2012). Dreaming the whole cat. Mind, 121(483), 753–771.

    Article  Google Scholar 

  • Clark, A. (2013). Mindware (2nd ed.). Oxford University Press.

    Google Scholar 

  • Clark, A. (2016). Surfing uncertainty. Oxford University press.

    Book  Google Scholar 

  • Clark, A. (2017). How to knit your Markov blanket. In T. Metzinger & W. Wiese (Eds.), Philosophy and predictive processing (Vol. 3, pp. 1–19). The MIND Group.

    Google Scholar 

  • Clark, A., & Chalmers, D. J. (1998). The extended mind. Analysis, 58(1), 7–19.

    Article  Google Scholar 

  • Coey, C. A., Varlet, M., & Richardson, M. J. (2012). Coordination dynamics in socially situated nervous systems. Frontiers in Human Neuroscience, 6, 1–16.

    Article  Google Scholar 

  • Constant, A., Clark, A., Kirchhoff, M., & Friston, K. J. (2019a). Extended active inference: Constructing predictive cognition beyond skulls. Mind and Language, 37(3), 373–394.

    Article  Google Scholar 

  • Constant, A., Clark, A., Kirchhoff, M., & Friston, K. J. (2019b). Regimes of expectations: An active inference model of social conformity and human decision making. Frontiers in Psychology, 10, 679.

    Article  Google Scholar 

  • Corcoran, A., Pezzulo, G., & Hohwy, J. (2020). From allostatic agents to counterfactual cognizers: Active inference, biological regulation, and the origins of cognition. Biology and Philosophy, 35(3), 1–45.

    Article  Google Scholar 

  • Dennett, D. (1991). Consciousness explained. Little Brown.

    Google Scholar 

  • Donnarumma, F., Costantini, M., Ambrosini, E., Friston, K. J., & Pezzulo, G. (2017). Action understanding as hypothesis testing. Cortex, 89, 45–60.

    Article  Google Scholar 

  • Fabry, R. E. (2017). Transcending the evidentiary boundary: Prediction error minimization, embodied interaction, and explanatory pluralism. Philosophical Psychology, 30(4), 395–414.

    Article  Google Scholar 

  • Facchin, M. (2021). Extended predictive minds: do Markov Blankets matter? Review of Philosophy and Psychology. https://doi.org/10.1007/s13164-021-00607-9

  • Facchin, M. (2022). There is no “inference within a model”. Behavioral and Brain Sciences, 45, e 138, 34–e 138, 35.

    Article  Google Scholar 

  • Favela, L., & Martin, J. (2017). “Cognition” and dynamical cognitive science. Minds and Machines, 27(2), 331–355.

    Article  Google Scholar 

  • Feldman, H., & Friston, K. J. (2010). Attention, uncertainty and free-energy. Frontiers in Human Neuroscience, 4, 215.

    Article  Google Scholar 

  • Friston, K. J. (2005). A theory of cortical responses. Philosophical Transaction of the Royal Society B: Biological Sciences, 360(1456), 815–836.

    Article  Google Scholar 

  • Friston, K. J. (2009). The free-energy principle: A rough guide to the brain? Trends in Cognitive Sciences, 13(7), 293–301.

    Article  Google Scholar 

  • Friston, K. J. (2011). What is optimal about optimal motor control? Neuron, 72(3), 488–498.

    Article  Google Scholar 

  • Friston, K. J. (2012a). A free-energy principle for biological systems. Entropy, 14(11), 2100–2121.

    Article  Google Scholar 

  • Friston, K. J. (2012b). Predictive coding, precision and synchrony. Cognitive Neuroscience, 3(3–4), 238–239.

    Article  Google Scholar 

  • Friston, K. J. (2013). Life as we know it. Journal of the Royal Society Interface, 10(86), 20130475.

    Article  Google Scholar 

  • Friston, K. J. (2018). Am I self-conscious? (or: Does self-organization entail self-consciousness?). Frontiers in Psychology, 9, 579.

    Article  Google Scholar 

  • Friston, K. J. (2019). Beyond the desert landscape. In M. Colombo, E. Irvine, & M. Stapleton (Eds.), Andy Clark and his critics (pp. 174–190). Oxford University Press.

    Chapter  Google Scholar 

  • Friston, K. J., & Frith, C. (2015a). A duet for one. Consciousness and Cognition, 36, 390–405.

    Article  Google Scholar 

  • Friston, K. J., & Frith, C. (2015b). Active inference, communication and hermeneutics. Cortex, 68, 129–163.

    Article  Google Scholar 

  • Friston, K. J., & Stephan, K. (2007). Free-energy and the brain. Synthese, 159(3), 417–458.

    Article  Google Scholar 

  • Friston, K. J., Adams, R. A., Perrinett, L., & Breakspear, M. (2012). Perception as hypothesis, saccades as experiments. Frontiers in Psychology, 3, 151.

    Article  Google Scholar 

  • Friston, K. J., Levin, M., Sengupta, B., & Pezzullo, G. (2015). Knowing one’s place: A free-energy approach to pattern regulation. Journal of the Royal Society Interface, 12(105), 20141383.

    Article  Google Scholar 

  • Friston, K. J., Rosch, R., Parr, T., Price, C., & Bowman, H. (2017). Deep temporal models and active inference. Neuroscience and Biobehavioral Reviews, 77, 388–402.

    Article  Google Scholar 

  • Friston, K. J., Wiese, W., & Hobson, J. A. (2020). Sentience and the origin of consciousness: From Cartesian duality to Markovian monism. Entropy, 22(5), 516.

    Article  Google Scholar 

  • Goodman, J. R. L., et al. (2005). The interpersonal phase entrainment of rocking chair movements. In H. Heft & K. L. Marsh (Eds.), Studies in perception and action VIII: Thirteenth international conference on perception and action (pp. 49–53). Erlbaum.

    Google Scholar 

  • Haken, H., Kelso, J. S., & Bunz, K. (1985). A theoretical model of phase transitions in human hand movements. Biological Cybernetics, 51(5), 347–356.

    Article  Google Scholar 

  • Hobson, J. A., & Friston, K. J. (2014). Waking and dreaming consciousness: Neurobiological and functional considerations. Progress in Neurobiology, 98(1), 82–98.

    Article  Google Scholar 

  • Hohwy, J. (2013). The predictive mind. Oxford University Press.

    Book  Google Scholar 

  • Hohwy, J. (2016). The self evidencing brain. Noûs, 50(2), 259–282.

    Article  Google Scholar 

  • Hohwy, J. (2017). How to entrain your evil demon. In T. Metzinger & W. Wiese (Eds.), Philosophy and predictive processing (Vol. 2, pp. 1–15). The MIND Group.

    Google Scholar 

  • Hohwy, J. (2020). Self-supervision, normativity and the free-energy principle. Synthese, 199(1–2), 29–53.

    Google Scholar 

  • Hohwy, J. (2021). Conscious self-evidencing. Review of Psychology and Philosophy, 13(4), 809–828.

    Article  Google Scholar 

  • Hurley, S. (1998). Consciousness in action. Harvard University Press.

    Google Scholar 

  • Hurley, S. (2001). Perception and action: Alternative views. Synthese, 129(1), 3–40.

    Article  Google Scholar 

  • Hurley, S. (2010). The varieties of externalism. In R. Menary (Ed.), The extended mind (pp. 101–153). MIT Press.

    Chapter  Google Scholar 

  • Hurley, S., & Noe, A. (2003). Neural plasticity and consciousness. Biology and Philosophy, 18(1), 131–168.

    Article  Google Scholar 

  • Iodice, P., Porciello, G., Bufalari, I., Barca, L., & Pezzulo, G. (2019). An interoceptive illusion of effort induced by false heart-rate feedback. Proceedings of the National Academy of Sciences, 116(28), 13897–13902.

    Article  Google Scholar 

  • Jiang, J., Chen, C., Dai, B., Shi, G., Ding, G., Liu, L., & Lu, C. (2015). Leader emergence through interpersonal neuronal synchronization. Proceedings of the National Academy of Sciences, 112(14), 4274–4279.

    Article  Google Scholar 

  • Kang, O., & Wheatley, T. (2017). Pupil dilatation patterns spontaneously synchronize across individuals during shared attention. Journal of Experimental Psychology: General, 146(4), 569–576.

    Article  Google Scholar 

  • Kaplan, D. M. (2012). How to demarcate the boundaries of cognition. Biology and Philosophy, 27(4), 545–570.

    Article  Google Scholar 

  • Kelso, S. (1995). Dynamic patterns. MIT Press.

    Google Scholar 

  • Kiebel, S. J., von Kriegstein, K., Daunizeau, J., & Friston, K. J. (2009). Recognizing sequences of sequences. PLoS Computational Biology, 5(8), e1000464.

    Article  Google Scholar 

  • Kilner, J. M., et al. (2007). Predictive coding: An account of the mirror neuron system. Cognitive Processing, 8(3), 159–166.

    Article  Google Scholar 

  • Kilner, J. M., et al. (2011). Action understanding and active inference. Biological Cybernetics, 104(1–2), 137–160.

    Google Scholar 

  • Kirchhoff, M. D. (2015). Experiential fantasies, prediction, and enactive minds. Journal of Consciousness Studies., 22(3–4), 68–92.

    Google Scholar 

  • Kirchhoff, M. D. (2018). Predictive processing, perceiving and imagining: Is to perceive to imagine, or something close to it? Philosophical Studies, 175(3), 751–767.

    Article  Google Scholar 

  • Kirchhoff, M. D., & Kiverstein, J. (2019a). Extended consciousness and predictive processing. Routledge.

    Book  Google Scholar 

  • Kirchhoff, M. D., & Kiverstein, J. (2019b). How to determine the boundaries of the mind: A Markov blanket proposal. Synthese, 198(5), 4791–4810.

    Article  Google Scholar 

  • Kirchhoff, M. D., & Kiverstein, J. (2020). Attuning to the world: The diachronic constitution of the extended conscious mind. Frontiers in Psychology, 11, 1966.

    Article  Google Scholar 

  • Kirchhoff, M. D., Parr, T., Palacios, E., Friston, K. J., & Kiverstein, J. (2018). The Markov blankets of life: Autonomy, active inference and the free-energy principle. Journal of the Royal Society Interface, 15(138), 20170792.

    Article  Google Scholar 

  • Kiverstein, J. (2018). Extended cognition. In A. Newen, L. de Bruin, & S. Gallagher (Eds.), The Oxford handbook of 4E cognition (pp. 19–40). Oxford University Press.

    Google Scholar 

  • Kiverstein, J., & Farina, M. (2012). Do sensory substitution devices extend the conscious mind? In F. Paglieri (Ed.), Consciousness in interaction (pp. 19–40). John Benjamins Publishing Company.

    Chapter  Google Scholar 

  • Koch, C., Massimini, M., Boly, M., & Tononi, G. (2016). Neural correlates of consciousness: Progress and problems. Nature Reviews Neuroscience, 17(5), 307–321.

    Article  Google Scholar 

  • Laflaquiere, A. (2017). Grounding the experience of a visual field through sensorimotor contingencies. Neurocomputing, 268, 142–152.

    Article  Google Scholar 

  • Lamb, M., & Chemero, A. (2018). Interaction in the open: Where dynamical systems become extended and embodied. In A. Newen, L. de Bruin, & S. Gallagher (Eds.), The Oxford handbook of 4E cognition (pp. 147–162). Oxford University Press.

    Google Scholar 

  • Lange, M. (2017). Because without cause: Non-causal explanations in science and mathematics. Oxford University Press.

    Google Scholar 

  • Leinweber, M., Leinweber, M., Ward, D. R., Sobczak, J. M., Attinger, A., & Keller, G. B. (2017). A sensorimotor circuit in the mouse cortex for visual flow prediction. Neuron, 95(6), 1420–1432.

    Article  Google Scholar 

  • Liu, T., Saito, H., & Oi, M. (2015). Role of the right inferior frontal gyrus in turn-based cooperation and competition: A near-infrared spectroscopy study. Brain and Cognition, 99, 17–23.

    Article  Google Scholar 

  • Liu, N., Mok, C., Witt, E. E., Pradhan, A. H., Chen, J. E., & Reiss, A. L. (2016). NIRS-based hyperscanning reveals inter-brain neural synchronization during cooperative Jenga game with face-to-face communication. Frontiers in Human Neuroscience, 10, 82.

    Article  Google Scholar 

  • Lupyan, G., Rahman, R. A., Boroditsky, L., & Clark, A. (2020). Effects of language on visual perception. Trends in Cognitive Sciences, 24(11), 930–944.

    Article  Google Scholar 

  • Mamassian, P., Landy, M., & Maloney, L. T. (2002). Bayesian modelling of visual perception. In I. R. Rao, B. Olshausen, & M. Lewicki (Eds.), Probabilistic models of the brain: Perception and neural functioning (pp. 13–36). MIT Press.

    Google Scholar 

  • Maye, A., & Engel, A. K. (2013). Extending sensorimotor contingency theory: Prediction, planning, and action generation. Adaptive Behavior, 21(6), 423–436.

    Article  Google Scholar 

  • Menary, R., & Gillett, A. (2020). Are markov blankets real and does it matter? In D. Mendoça, M. Curado, & S. Gouveia (Eds.), The philosophy and science of predictive processing (pp. 39–58). Bloomsbury Academic.

    Google Scholar 

  • Menary, R., & Gillett, A. (2022). Markov blankets do not demarcate the boundaries of the mind. Behavioral and Brain Sciences, 45(136), 44–45.

    Google Scholar 

  • Millidge, B., Tschantz, A., & Buckley, C. L. (2021). Whence expected free-energy? Neural Computation, 33(2), 447–482.

    Article  Google Scholar 

  • Nagel, T. (1974). What is it like to be a bat? Readings in Philosophy and Psychology, 1, 159–168.

    Google Scholar 

  • Noë, A. (2004). Action in perception. MIT Press.

    Google Scholar 

  • Noë, A. (2009). Out of our heads. Macmillan.

    Google Scholar 

  • O’Regan, J. K. (2011). Why red doesn’t sound like a bell: Understanding the feeling of consciousness. Oxford University Press.

    Book  Google Scholar 

  • O’Regan, J. K., & Noë, A. (2001a). A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences, 24(5), 939–973.

    Article  Google Scholar 

  • O’Regan, J. K., & Noë, A. (2001b). What it is like to see. A sensorimotor theory of perceptual experience. Synthese, 192(1), 79–103.

    Article  Google Scholar 

  • Orlandi, N. (2014). The innocent eye. Oxford University Press.

    Book  Google Scholar 

  • Palacios, E. R., Isomura, T., Parr, T., & Friston, K. J. (2019). The emergence of synchrony in networks of mutually inferring neurons. Scientific Reports, 9(1), 1–14.

    Article  Google Scholar 

  • Palacios, E. R., Razi, A., Parr, T., Kirchhoff, M., & Friston, K. (2020). On Markov blanket and hierarchical self-organization. Journal of Theoretical Biology, 486, 110089.

    Article  Google Scholar 

  • Palermos, O. (2014). Loops constitution, and cognitive extension. Cognitive Systems Research, 27, 25–41.

    Article  Google Scholar 

  • Parr, T., Pezzulo, G., & Friston, K. (2022). Active inference. MIT Press.

    Book  Google Scholar 

  • Pepper, K. (2014). Do sensorimotor dynamics extend the conscious mind? Adaptive Behavior, 22(2), 99–108.

    Article  Google Scholar 

  • Pezzulo, G. (2014). Why do you fear the bogeyman? An embodied predictive coding model of perceptual inference. Cognitive, Affective, & Behavioral Neuroscience, 14(3), 902–911.

    Article  Google Scholar 

  • Pezzulo, G., Donnarumma, F., Iodice, P., Maisto, D., & Stoianov, I. (2017). Model-based approaches to active perception and control. Entropy, 19(6), 266.

    Article  Google Scholar 

  • Putnam, H. (1975). The meaning of “meaning”. In H. Putnam (Ed.), Philosophical Papers Vol. II: Mind, Language and Reality (pp. 215–271). Cambridge University Press.

    Chapter  Google Scholar 

  • Raja, V., Valluri, D., Baggs, E., Chemero, A., & Anderson, M. L. (2021). The Markov blanket trick. Physics of Life Review, 39, 49–72.

    Article  Google Scholar 

  • Rao, R., & Ballard, D. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive field effects. Nature Neuroscience, 2(1), 79–87.

    Article  Google Scholar 

  • Richardson, M. J., Marsh, K. L., & Schmidt, R. C. (2005). Effects of visual and verbal interaction on unintentional interpersonal coordination. Journal of Experimental Psychology: Human Perception and Performance, 31(1), 62–79.

    Article  Google Scholar 

  • Richardson, M. J., Marsh, K. L., Isenhower, R. W., Goodman, J. R., & Schmidt, R. C. (2007). Rocking together: Dynamics of intentional and unintentional social coordination. Human Movement Science, 26, 867–891.

    Article  Google Scholar 

  • Rietveld, E., & Kiverstein, J. (2014). A rich landscape of affordances. Ecological Psychology, 26(4), 325–352.

    Article  Google Scholar 

  • Rietveld, E., Denys, D., & Van Westen, M. (2018). Ecological-enactive cognition as engaging with a field of relevant affordances: The skilled-intentionality framework (SIF). In A. Newen, L. de Bruin, & S. Gallagher (Eds.), The Oxford handbook of 4E cognition (pp. 41–70). Oxford University Press.

    Google Scholar 

  • Roepstorff, A., Niewöhner, J., & Beck, S. (2010). Enculturating brains through patterned practices. Neural Networks, 23, 1051–1059.

    Article  Google Scholar 

  • Ross, L. (2020). The explanatory nature of constraints: Law-based, mathematical, and causal. Phil-Sci Archive, 18504.

    Google Scholar 

  • Rowlands, M. (2010). The New Mind Sciences. The MIT Press.

    Google Scholar 

  • Rowlands, M. (2020). Externalism about the mind. In E. Zalta (Ed.), The Stanford encyclopedia of philosophy (winter 2020 edition). Retrieved from https://plato.stanford.edu/archives/win2020/entries/content-externalism

  • Schmidt, R. C., & Richardson, M. J. (2008). Dynamics of interpersonal coordination. In A. Fuchs & V. K. Jirsa (Eds.), Coordination: Neural, behavioral and social dynamics (pp. 281–308). Springer.

    Chapter  Google Scholar 

  • Schmidt, R. C., Carello, C., & Turvey, M. T. (1990). Phase transitions and critical fluctuations in the visual coordination of rhythmic movements between people. Journal of Experimental Psychology: Human Perception and Performance, 16(2), 227–247.

    Google Scholar 

  • Seth, A. K. (2013). Interoceptive inference, emotion, and the embodied self. Trends in Cognitive Sciences, 17(11), 565–573.

    Article  Google Scholar 

  • Seth, A. K. (2014). A predictive processing theory of sensorimotor contingencies: Explaining the puzzle of perceptual presence and its absence in synesthesia. Cognitive Neuroscience, 5(2), 97–188.

    Article  Google Scholar 

  • Seth, A. K. (2021). Being you. Faber & Faber.

    Google Scholar 

  • Seth, A. K., & Bayne, T. (2022). Theories of consciousness. Nature Reviews Neuroscience, 23(7), 439–452.

    Article  Google Scholar 

  • Seth, A. K., & Friston, K. (2016). Active interoceptive inference and the emotional brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1708), 2016007.

    Article  Google Scholar 

  • Seth, A. K., & Hohwy, J. (2020). Predictive processing as a systematic basis for identifying the neural correlates of consciousness. Philosophy and the Mind Sciences, 1(2), 3.

    Google Scholar 

  • Shi, Y. Y., & Sun, H. (2008). Image and video compression for multimedia engineering. Fundamentals, algorithms and standards (2nd ed.). CRC Press.

    Google Scholar 

  • Shockley, K., Santana, M. V., & Fowler, C. A. (2003). Mutual interpersonal postural constraints are involved in cooperative conversation. Journal of Experimental Psychology: Human Perception and Performance, 29(2), 326–332.

    Google Scholar 

  • Spratling, M. W. (2016). Predictive coding as a model of cognition. Cognitive Processing, 17(3), 279–305.

    Article  Google Scholar 

  • Spratling, M. W. (2017). A review of predictive coding algorithms. Brain and Cognition, 112, 92–97.

    Article  Google Scholar 

  • Sprevak, M. (2009). Extended cognition and functionalism. The Journal of Philosophy, 106(9), 503–527.

    Article  Google Scholar 

  • Stephens, G. J., Silbert, L. J., & Hasson, U. (2010). Speaker-listener neural coupling underlies successful communication. Proceedings of the National Academy of Sciences, 107(32), 14425–14430.

    Article  Google Scholar 

  • Tani, J. (2016). Exploring robotic minds. Oxford University Press.

    Book  Google Scholar 

  • Thierry, G., Athanasopoulos, P., Wiggett, A., Dering, B., & Kuipers, J. R. (2009). Unconscious effects of language specific terminology on preattentive color perception. Proceedings of the National Academy of Sciences, 106(11), 4567–4570.

    Article  Google Scholar 

  • Tognoli, E., Zhang, M., Fuchs, A., Beetle, C., & Kelso, J. S. (2020). Coordination dynamics: A foundation for understanding social behavior. Frontiers in Human Neuroscience, 14, 317.

    Article  Google Scholar 

  • Valencia, A. L., & Froese, T. (2020). What binds us? Interbrain neural synchronization and its implications for theories of human consciousness. Neuroscience of Consciousness, 2020(1), niaa010.

    Article  Google Scholar 

  • Vallée-Tourangeau, F., Steffensen, S. V., Vallée-Tourangeau, G., & Sirota, M. (2016). Insight with hands and things. Acta Psychologica, 170, 195–205.

    Article  Google Scholar 

  • Vázquez, M. J. C. (2020). A match made in heaven: Predictive approaches to (an unorthodox) sensorimotor enactivism. Phenomenology and the Cognitive Sciences, 19, 653–684.

    Article  Google Scholar 

  • Vold, K. (2015). The parity argument for extended consciousness. Journal of Consciousness Studies, 22(3–4), 16–33.

    Google Scholar 

  • Vold, K. (2021). Can consciousness extend? Philosophical Topics, 48(1), 243–264.

    Article  Google Scholar 

  • Wheatley, T., Kang, O., Parkinson, C., & Looser, C. E. (2012). From mind perception to mental connection: Synchrony as a mechanism for social understanding. Social and Personality Psychology Compass, 6(8), 589–606.

    Article  Google Scholar 

  • Wiese, W. (2018). Experienced wholeness. Integrating insights from gestalt theory, cognitive neuroscience, and predictive processing. MIT Press.

    Book  Google Scholar 

  • Wiese, W., & Metzinger, T. (2017). Vanilla PP for philosophers. In T. Metzinger & W. Wiese (Eds.), Philosophy and predictive processing: 1 (pp. 1–18). The MIND Group.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Facchin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Facchin, M., Negro, N. (2023). Predictive Processing and Extended Consciousness: Why the Machinery of Consciousness Is (Probably) Still in the Head and the DEUTS Argument Won’t Let It Leak Outside. In: Casper, MO., Artese, G.F. (eds) Situated Cognition Research. Studies in Brain and Mind, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-031-39744-8_12

Download citation

Publish with us

Policies and ethics