Skip to main content

Fungal Sensing Skin

  • Chapter
  • First Online:
Fungal Machines

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 47))

  • 354 Accesses

Abstract

A fungal skin is a thin flexible sheet of a living homogeneous mycelium made by a filamentous fungus. The skin could be used in future living architectures of adaptive buildings and as a sensing living skin for soft self-growing/adaptive robots. In experimental laboratory studies we demonstrate that the fungal skin is capable for recognising mechanical and optical stimulation. The skin reacts differently to loading of a weight, removal of the weight, and switching illumination on and off. These are the first experimental evidences that fungal materials can be used not only as mechanical ‘skeletons’ in architecture and robotics but also as intelligent skins capable for recognition of external stimuli and sensorial fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Soni, M., Dahiya, R.: Soft eskin: distributed touch sensing with harmonized energy and computing. Phil. Trans. R. Soc. A 378(2164), 20190156 (2020)

    Article  Google Scholar 

  2. Ma, M., Zhang, Z., Liao, Q., Yi, F., Han, L., Zhang, G., Liu, S., Liao, X., Zhang, Y.: Self-powered artificial electronic skin for high-resolution pressure sensing. Nano Energy 32, 389–396 (2017)

    Article  Google Scholar 

  3. Zhao, S., Zhu, R.: Electronic skin with multifunction sensors based on thermosensation. Adv. Mater. 29(15), 1606151 (2017)

    Article  Google Scholar 

  4. Chou, H.-H., Nguyen, A., Chortos, A., To, J.W.F., Lu, C., Mei, J., Kurosawa, T., Bae, W.-G., Tok, J.B.-H., Bao, Z.: A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nat. Commun. 6(1), 1–10 (2015)

    Google Scholar 

  5. Yang, T., Wang, W., Zhang, H., Li, X., Shi, J., He, Y., Zheng, Q., Li, Z., Zhu, H.: Tactile sensing system based on arrays of graphene woven microfabrics: electromechanical behavior and electronic skin application. ACS Nano 9(11), 10867–10875 (2015)

    Article  Google Scholar 

  6. Wang, X., Dong, L., Zhang, H., Yu, R., Pan, C., Wang, Z.L.: Recent progress in electronic skin. Adv. Sci. 2(10), 1500169 (2015)

    Google Scholar 

  7. Pu, X., Liu, M., Chen, X., Sun, J., Du, C., Zhang, Y., Zhai, J., Hu, W., Wang, Z.L.: Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 3(5), e1700015 (2017)

    Google Scholar 

  8. Chortos, A., Liu, J., Bao, Z.: Pursuing prosthetic electronic skin. Nat. Mater. 15(9), 937–950 (2016)

    Article  Google Scholar 

  9. Park, S., Kim, H., Vosgueritchian, M., Cheon, S., Kim, H., Koo, J.H., Kim, T.R., Lee, S., Schwartz, G., Chang, H., et al.: Stretchable energy-harvesting tactile electronic skin capable of differentiating multiple mechanical stimuli modes. Adv. Mat. 26(43), 7324–7332 (2014)

    Article  Google Scholar 

  10. Núñez, C.G., Manjakkal, L., Dahiya, R.: Energy autonomous electronic skin. npj Flex. Electr. 3(1), 1–24 (2019)

    Article  Google Scholar 

  11. Wang, C., Hwang, D., Zhibin, Yu., Takei, K., Park, J., Chen, T., Ma, B., Javey, A.: User-interactive electronic skin for instantaneous pressure visualization. Nat. Mater. 12(10), 899–904 (2013)

    Article  Google Scholar 

  12. Wang, X., Yang, G., Xiong, Z., Cui, Z., Zhang, T.: Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv. Mater. 26(9), 1336–1342 (2014)

    Article  Google Scholar 

  13. Sekitani, T., Someya, T.: Stretchable organic integrated circuits for large-area electronic skin surfaces. MRS Bull. 37(3), 236–245 (2012)

    Article  Google Scholar 

  14. Guo, H., Lan, C., Zhou, Z., Sun, P., Wei, D., Li, C.: Transparent, flexible, and stretchable ws 2 based humidity sensors for electronic skin. Nanoscale 9(19), 6246–6253 (2017)

    Article  Google Scholar 

  15. Qiao, Y., Wang, Y., Tian, H., Li, M., Jian, J., Wei, Y., Tian, Y., Dan-Yang Wang, Yu., Pang, X.G., et al.: Multilayer graphene epidermal electronic skin. ACS Nano 12(9), 8839–8846 (2018)

    Article  Google Scholar 

  16. Zhao, X., Hua, Q., Ruomeng, Yu., Zhang, Y., Pan, C.: Flexible, stretchable and wearable multifunctional sensor array as artificial electronic skin for static and dynamic strain mapping. Adv. Electr. Mat. 1(7), 1500142 (2015)

    Article  Google Scholar 

  17. Scalisi, R.G., Paleari, M., Favetto, A., Stoppa, M., Ariano, P., Pandolfi, P., Chiolerio, A.: Inkjet printed flexible electrodes for surface electromyography. Org. Electron. 18, 89–94 (2015)

    Article  Google Scholar 

  18. Chiolerio, A., Rivolo, P., Porro, S., Stassi, S., Ricciardi, S., Mandracci, P., Canavese, G., Bejtka, K., Pirri, C.F.: Inkjet-printed pedot: pss electrodes on plasma modified pdms nanocomposites: quantifying plasma treatment hardness. RSC Advances 4, 51477 (2014)

    Article  Google Scholar 

  19. Chiolerio, A., Adamatzky, A.: Tactile sensing and computing on a random network of conducting fluid channels. Flex. Printed Electr. (2020)

    Google Scholar 

  20. Adamatzky, A., Ayres, P., Belotti, G., Wösten, H.: Fungal architecture position paper. Int. J. Unconv. Comput. 14 (2019)

    Google Scholar 

  21. El-Hussieny, H., Mehmood, U., Mehdi, Z., Jeong, S.-G., Usman, M., Hawkes, E.W., Okarnura, A.M., Ryu, J.-H.: Development and evaluation of an intuitive flexible interface for teleoperating soft growing robots. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4995–5002. IEEE (2018)

    Google Scholar 

  22. Sadeghi, A., Mondini, A., Mazzolai, B.: Toward self-growing soft robots inspired by plant roots and based on additive manufacturing technologies. Soft Rob. 4(3), 211–223 (2017)

    Article  Google Scholar 

  23. Rieffel, J., Knox, D., Smith, S., Trimmer, B.: Growing and evolving soft robots. Artif. Life 20(1), 143–162 (2014)

    Article  Google Scholar 

  24. Greer, J.D., Morimoto, T.K., Okamura, A.M., Hawkes, E.W.: A soft, steerable continuum robot that grows via tip extension. Soft Robot. 6(1), 95–108 (2019)

    Article  Google Scholar 

  25. Meyer, V., Basenko, E.Y., Benz, J.P., Braus, G.H., Caddick, M.X., Csukai, M., de Vries, R.P., Endy, D., Frisvad, J.C., Gunde-Cimerman, N., Haarmann, T., Hadar, Y., Hansen, K., Johnson, R.I., Keller, N.P., Kraševec, N., Mortensen, U.H., Perez, R., Ram, A.F.J., Record, E., Ross, P., Shapaval, V., Steiniger, C., van den Brink, H., van Munster, J., Yarden, O., Wösten, H.A.B.: Growing a circular economy with fungal biotechnology: a white paper. Fungal Biol. Biotechnol. 7(1), 5 (2020)

    Article  Google Scholar 

  26. Haneef, M., Ceseracciu, L., Canale, C., Bayer, I.S., Heredia-Guerrero, J.A., Athanassiou, A.: Advanced materials from fungal mycelium: fabrication and tuning of physical properties. Sci. Rep. 7(1), 1–11 (2017)

    Article  Google Scholar 

  27. Jones, M., Mautner, A., Luenco, S., Bismarck, A., John, S.: A critical review, Engineered mycelium composite construction materials from fungal biorefineries (2020)

    Google Scholar 

  28. Wösten, H.A.B.: Filamentous fungi for the production of enzymes, chemicals and materials. Curr. Opin. Biotechnol. 59, 65–70 (2019)

    Article  Google Scholar 

  29. Adamatzky, A.: Towards slime mould colour sensor: recognition of colours by Physarum polycephalum. Org. Electron. 14(12), 3355–3361 (2013)

    Article  Google Scholar 

  30. Adamatzky, A.: Slime mould tactile sensor. Sens. Actuators B Chem. 188, 38–44 (2013)

    Article  Google Scholar 

  31. Whiting, J.G.H., de LacyCostello, B.P.J., Adamatzky, A.: Towards slime mould chemical sensor: Mapping chemical inputs onto electrical potential dynamics of Physarum Polycephalum. Sens. Actuators B: Chem. 191, 844–853 (2014)

    Google Scholar 

  32. Adamatzky, A.: On spiking behaviour of oyster fungi pleurotus djamor. Sci. Rep. 8(1), 1–7 (2018)

    Article  MathSciNet  Google Scholar 

  33. Beasley, A.E., Powell, A.L., Adamatzky, A.: Capacitive storage in mycelium substrate (2020). arXiv:2003.07816

  34. Beasley, A.E., Abdelouahab, M.-S., Lozi, R., Powell, A.L., Adamatzky, A.: Mem-fractive properties of mushrooms (2020). arXiv:2002.06413

  35. Moore, D.: Perception and response to gravity in higher fungi - a critical appraisal. New Phytol. (1991)

    Google Scholar 

  36. Hamlyn, P.F.: Fabricating fungi. In: Glasman, I., Lennox-Kerr, P. (eds.) Textile Technology International, chapter New applications, pp. 254–257. Sterling Publications Ltd, London (1991)

    Google Scholar 

  37. Hamlyn, P.F., Schmidt, R.J.: Potential therapeutic application of fungal filaments in wound management. Mycologist 8(4), 147–152 (1994)

    Article  Google Scholar 

  38. Ching-Hua, S., Sun, C.-S., Juan, S.-W., Chung-Hong, H., Ke, W.-T., Sheu, M.-T.: Fungal mycelia as the source of chitin and polysaccharides and their applications as skin substitutes. Biomaterials 18(17), 1169–1174 (1997)

    Article  Google Scholar 

  39. Ching-Hua, S., Sun, C.-S., Juan, S.-W., Ho, H.-O., Chung-Hong, H., Sheu, M.-T.: Development of fungal mycelia as skin substitutes: effects on wound healing and fibroblast. Biomaterials 20(1), 61–68 (1999)

    Article  Google Scholar 

  40. Hui, X., Liu, L., Cao, C., Weisheng, L., Zhu, Z., Guo, Z., Li, M., Wang, X., Huang, D., Wang, S., et al.: Wound healing activity of a skin substitute from residues of culinary-medicinal winter mushroom flammulina velutipes (agaricomycetes) cultivation. Int. J. Med. Mushrooms 21(7) (2019)

    Google Scholar 

  41. Narayanan, K.B., Zo, S.M., Han, S.S.: Novel biomimetic chitin-glucan polysaccharide nano/microfibrous fungal-scaffolds for tissue engineering applications. Int. J. Biol. Macromol. 149, 724–731 (2020)

    Article  Google Scholar 

  42. Kovacs, G.T.A.: Electronic sensors with living cellular components. Proc. IEEE 91(6), 915–929 (2003)

    Article  Google Scholar 

  43. Wu, C., Lillehoj, P.B., Wang, P.: Bioanalytical and chemical sensors using living taste, olfactory, and neural cells and tissues: a short review. Analyst 140(21), 7048–7061 (2015)

    Article  Google Scholar 

  44. Minzan, K., Shimizu, M., Miyasaka, K., Ogura, T., Nakai, J., Ohkura, M., Hosoda, K.: Toward living tactile sensors. In: Conference on Biomimetic and Biohybrid Systems, pp. 409–411. Springer (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Adamatzky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adamatzky, A., Gandia, A., Chiolerio, A. (2023). Fungal Sensing Skin. In: Adamatzky, A. (eds) Fungal Machines. Emergence, Complexity and Computation, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-031-38336-6_7

Download citation

Publish with us

Policies and ethics