Skip to main content

On Electrical Gates on Fungal Colony

  • Chapter
  • First Online:
Fungal Machines

Abstract

Mycelium networks are promising substrates for designing unconventional computing devices providing rich topologies and geometries where signals propagate and interact. Fulfilling our long-term objectives of prototyping electrical analog computers from living mycelium networks, including networks hybridised with nanoparticles, we explore the possibility of implementing Boolean logical gates based on electrical properties of fungal colonies. We converted a 3D image-data stack of Aspergillus niger fungal colony to an Euclidean graph and modelled the colony as resistive and capacitive (RC) networks, where electrical parameters of edges were functions of the edges’ lengths. We found that and, or and and-not gates are implementable in RC networks derived from the geometrical structure of the real fungal colony.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The macro was developed by the Advanced Digital Microscopy Core Facility, IRB Barcelona, to process Z-stack data for blood vessel segmentation and network analysis, see details in adm.irbbarcelona.org/bioimage-analysis/image-j-fiji and biii.eu/blood-vessel-segmentation-and-network-analysis.

References

  1. Karana, E., Blauwhoff, D., Hultink, E.-J., Camere, S.: When the material grows: a case study on designing (with) mycelium-based materials. Int. J. Des. 12(2) (2018)

    Google Scholar 

  2. Jones, M., Mautner, A., Luenco, S., Bismarck, A., John, S.: Engineered mycelium composite construction materials from fungal biorefineries: a critical review. Mater. Des. 187, 108397 (2020)

    Article  Google Scholar 

  3. Cerimi, K., Akkaya, K.C., Pohl, C., Schmidt, B., Neubauer, P.: Fungi as source for new bio-based materials: a patent review. Fungal Biol. Biotechnol. 6(1), 1–10 (2019)

    Google Scholar 

  4. Pelletier, M.G., Holt, G.A., Wanjura, J.D. Bayer, E., McIntyre, G.: An evaluation study of mycelium based acoustic absorbers grown on agricultural by-product substrates. Ind. Crops Prod. 51, 480–485 (2013)

    Google Scholar 

  5. Elsacker, E., Vandelook, S., Van Wylick, A., Ruytinx, J., De Laet, L., Peeters, E.: A comprehensive framework for the production of mycelium-based lignocellulosic composites. Sci. Total Environ. 725, 138431 (2020)

    Article  Google Scholar 

  6. Robertson, O., et al.: Fungal future: a review of mycelium biocomposites as an ecological alternative insulation material. In: DS 101: Proceedings of NordDesign 2020, Lyngby, Denmark, 12th-14th August 2020, pp. 1–13 (2020)

    Google Scholar 

  7. Yang, Z., Zhang, F., Still, B., White, M., Amstislavski, P.: Physical and mechanical properties of fungal mycelium-based biofoam. J. Mater. Civ. Eng. 29(7), 04017030 (2017)

    Article  Google Scholar 

  8. Xing, Y., Brewer, M., El-Gharabawy, H., Griffith, G., Jones, P.: Growing and testing mycelium bricks as building insulation materials. In: IOP Conference Series: Earth and Environmental Science, vol. 121, pp. 022032. IOP Publishing (2018)

    Google Scholar 

  9. Girometta, C., Picco, A.M., Baiguera, R.M., Dondi, D., Babbini, S., Cartabia, M., Pellegrini, M., Savino, E.: Physico-mechanical and thermodynamic properties of mycelium-based biocomposites: a review. Sustainability 11(1), 281 (2019)

    Google Scholar 

  10. Dias, P.P., Jayasinghe, L.B., Waldmann, D.: Investigation of mycelium-miscanthus composites as building insulation material. Results Mater. 10, 100189 (2021)

    Google Scholar 

  11. Wang, F., Li, H.-G., Kang, S.-S., Bai, Y.-F., Cheng, G.-Z., Zhang, G.-G.: The experimental study of mycelium/expanded perlite thermal insulation composite material for buildings. Sci. Technol. Eng. 2016, 20 (2016)

    Google Scholar 

  12. Cárdenas-R, J.P.: Thermal insulation biomaterial based on hydrangea macrophylla. In: Bio-Based Materials and Biotechnologies for Eco-Efficient Construction, pp. 187–201. Elsevier (2020)

    Google Scholar 

  13. Holt, G.A., Mcintyre, G., Flagg, D., Bayer, E., Wanjura, J.D., Pelletier, M.G.: Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material: evaluation study of select blends of cotton byproducts. J. Biobased Mater. Bioenergy 6(4), 431–439 (2012)

    Google Scholar 

  14. Sivaprasad, S., Byju, S.K., Prajith, C., Shaju, J., Rejeesh, C.R.: Development of a novel mycelium bio-composite material to substitute for polystyrene in packaging applications. Mater. Today Proc. (2021)

    Google Scholar 

  15. Mojumdar, A., Behera, H.T., Ray, L.: Mushroom mycelia-based material: an environmental friendly alternative to synthetic packaging. Microb. Polym. 131–141 (2021)

    Google Scholar 

  16. Adamatzky, A., Nikolaidou, A., Gandia, A., Chiolerio, A., Dehshibi, M.M.: Reactive fungal wearable. Biosystems 199, 104304 (2021)

    Article  Google Scholar 

  17. Silverman, J., Cao, H., Cobb, K.: Development of mushroom mycelium composites for footwear products. Cloth. Text. Res. J. 38(2), 119–133 (2020)

    Article  Google Scholar 

  18. Appels, F.V.W.: The use of fungal mycelium for the production of bio-based materials. PhD thesis, Universiteit Utrecht (2020)

    Google Scholar 

  19. Jones, M., Gandia, A., John, S., Bismarck, A.: Leather-like material biofabrication using fungi. Nat. Sustain. 1–8 (2020)

    Google Scholar 

  20. Adamatzky, A., Ayres, P., Belotti, G., Wösten, H.: Fungal architecture position paper. Int. J. Unconv. Comput. 14 (2019)

    Google Scholar 

  21. Adamatzky, A., Gandia, A., Ayres, P., Wösten, H., Tegelaar, M.: Adaptive fungal architectures. LINKs-series 5, 66–77 (2021)

    Google Scholar 

  22. Bahn, Y.-S., Xue, C., Idnurm, A., Rutherford, J.C., Heitman, J., Cardenas, M.E.: Sensing the environment: lessons from fungi. Nat. Rev. Microbiol. 5(1), 57 (2007)

    Google Scholar 

  23. Van Aarle, I.M., Olsson, P.A., Söderström, B.: Arbuscular mycorrhizal fungi respond to the substrate ph of their extraradical mycelium by altered growth and root colonization. New Phytol. 155(1), 173–182 (2002)

    Google Scholar 

  24. Kung, C.: A possible unifying principle for mechanosensation. Nature 436(7051), 647 (2005)

    Article  Google Scholar 

  25. Fomina, M., Ritz, K., Gadd, G.M.: Negative fungal chemotropism to toxic metals. FEMS Microbiol. Lett. 193(2), 207–211 (2000)

    Google Scholar 

  26. Bahn, Y.-S., Mühlschlegel, F.A.: Co2 sensing in fungi and beyond. Current Opin. Microbiol. 9(6), 572–578 (2006)

    Google Scholar 

  27. Jaffe, M.J., Carl Leopold, A., Staples, R.C.: Thigmo responses in plants and fungi. Am. J. Bot. 89(3), 375–382 (2002)

    Google Scholar 

  28. Howitz, K.T., Sinclair, D.A.: Xenohormesis: sensing the chemical cues of other species. Cell 133(3), 387–391 (2008)

    Google Scholar 

  29. Beasley, A.E., Powell, A.L., Adamatzky, A.: Capacitive storage in mycelium substrate (2020). arXiv:2003.07816

  30. Beasley, A.E., Abdelouahab, M.-S., Lozi, R., Powell, A.L., Adamatzky, A.: Mem-fractive properties of mushrooms (2020). arXiv:2002.06413

  31. Beasley, A.E., Powell, A.L., Adamatzky, A.: Fungal photosensors (2020). arXiv:2003.07825

  32. Adamatzky, A., Tegelaar, M., Wosten, H.A.B., Powell, A.L., Beasley, A.E., Mayne, R.: On Boolean gates in fungal colony. Biosystems 193, 104138 (2020)

    Google Scholar 

  33. Siccardi, S., Adamatzky, A., Tuszyński, J., Huber, F., Schnauß, J.: Actin networks voltage circuits. Phys. Rev. E 101(5), 052314 (2020)

    Article  Google Scholar 

  34. Miller, J.F., Downing, K.: Evolution in materio: looking beyond the silicon box. In: Proceedings 2002 NASA/DoD Conference on Evolvable Hardware, pp. 167–176. IEEE (2002)

    Google Scholar 

  35. Miller, J.F., Harding, S.L., Tufte, G.: Evolution-in-materio: evolving computation in materials. Evol. Intell. 7(1), 49–67 (2014)

    Google Scholar 

  36. Stepney, S.: Co-designing the computational model and the computing substrate. In: International Conference on Unconventional Computation and Natural Computation, pp. 5–14. Springer (2019)

    Google Scholar 

  37. Miller, J.F., Hickinbotham, S.J., Amos, M.: In materio computation using carbon nanotubes. In: Computational Matter, pp. 33–43. Springer (2018)

    Google Scholar 

  38. Julian Francis Miller: The alchemy of computation: designing with the unknown. Nat. Comput. 18(3), 515–526 (2019)

    Article  MathSciNet  Google Scholar 

  39. Verstraeten, D., Schrauwen, B., d’Haene, M., Stroobandt, D.: An experimental unification of reservoir computing methods. Neural Netw. 20(3), 391–403 (2007)

    Article  MATH  Google Scholar 

  40. Lukoševičius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3(3), 127–149 (2009)

    Article  MATH  Google Scholar 

  41. Dale, M., Miller, J.F., Stepney, S.: Reservoir computing as a model for in-materio computing. In: Advances in Unconventional Computing, pp. 533–571. Springer (2017)

    Google Scholar 

  42. Konkoli, Z., Nichele, S., Dale, M., Stepney, S.: Reservoir computing with computational matter. In: Computational Matter, pp. 269–293. Springer (2018)

    Google Scholar 

  43. Dale, M., Miller, J.F., Stepney, S., Trefzer, M.A.: A substrate-independent framework to characterize reservoir computers. Proc. R. Soc. A 475(2226), 20180723 (2019)

    Google Scholar 

  44. Adamatzky, A.: On spiking behaviour of oyster fungi pleurotus djamor. Sci. Rep. 8(1), 1–7 (2018)

    Article  MathSciNet  Google Scholar 

  45. Adamatzky, A., Gandia, A.: On electrical spiking of ganoderma resinaceum. Biophys. Rev. Lett. 1–9 (2021)

    Google Scholar 

  46. Vinck, A., de Bekker, C., Ossin, A., Ohm, R.A., de Vries, R.P., Wösten, H.A.B.: Heterogenic expression of genes encoding secreted proteins at the periphery of Aspergillus niger colonies. Environ. Microbiol. 13(1), 216–225 (2011)

    Google Scholar 

  47. De Vries, R.P., Burgers, K., van de Vondervoort, P.J.I., Frisvad, J.C., Samson, R.A., Visser, J.: A new black aspergillus species, a. vadensis, is a promising host for homologous and heterologous protein production. Appl. Environ. Microbiol. 70(7), 3954–3959 (2004)

    Google Scholar 

  48. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al.: Fiji: an open-source platform for biological-image analysis. Nat. Methods 9(7), 676–682 (2012)

    Article  Google Scholar 

  49. Ollion, J., Cochennec, J., Loll, F., Escudé, C., Boudier, T.: Tango: a generic tool for high-throughput 3d image analysis for studying nuclear organization. Bioinformatics 29(14), 1840–1841 (2013)

    Article  Google Scholar 

  50. Tegelaar, M., Wösten, H.A.B.: Functional distinction of hyphal compartments. Sci. Rep. 7(1), 1–6 (2017)

    Article  Google Scholar 

  51. Hagberg, A., Swart, P., Chult, D.S.: Exploring network structure, dynamics, and function using NetworkX. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United States) (2008)

    Google Scholar 

  52. Adamatzky, A., Bull, L.: Are complex systems hard to evolve? Complexity 14(6), 15–20 (2009)

    Article  Google Scholar 

  53. Siccardi, S., Tuszynski, J.A., Adamatzky, A.: Boolean gates on actin filaments. Phys. Lett. A 380(1), 88–97 (2016)

    Google Scholar 

  54. Harding, S., Koutník, J., Schmidhuber, J., Adamatzky, A.: Discovering Boolean gates in slime mould. In: Inspired by Nature, pp. 323–337. Springer (2018)

    Google Scholar 

  55. Berzina, T., Dimonte, A., Adamatzky, A., Erokhin, V., Iannotta, S.: Biolithography: Slime mould patterning of polyaniline. Appl. Surf. Sci. 435, 1344–1350 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Adamatzky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beasley, A.E., Ayres, P., Tegelaar, M., Tsompanas, MA., Adamatzky, A. (2023). On Electrical Gates on Fungal Colony. In: Adamatzky, A. (eds) Fungal Machines. Emergence, Complexity and Computation, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-031-38336-6_20

Download citation

Publish with us

Policies and ethics