Skip to main content

Mem-Fractive Properties of Fungi

  • Chapter
  • First Online:
Fungal Machines

Abstract

Memristors close the loop for I-V characteristics of the traditional, passive, semi-conductor devices. A memristor is a physical realisation of the material implication and thus is a universal logical element. Memristors are getting particular interest in the field of bioelectronics. Electrical properties of living substrates are not binary and there is nearly a continuous transitions from being non-memristive to mem-fractive (exhibiting a combination of passive memory) to ideally memristive. In laboratory experiments we show that living oyster mushrooms Pleurotus ostreatus exhibit mem-fractive properties. We offer a piece-wise polynomial approximation of the I-V behaviour of the oyster mushrooms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  2. Abdelouahab, M.-S., Lozi, R., Chua, L.: Memfractance: a mathematical paradigm for circuit elements with memory. Int. J. Bifurc. Chaos 24(9), 1430023 (2014)

    Article  MATH  Google Scholar 

  3. Strukov, D.B., Snider, G.S., Stewart, D.R., Stanley Williams, R.: The missing memristor found. Nature 453(7191), 80–83 (2008)

    Article  Google Scholar 

  4. Khalil, N.A., Said, L.A., Radwan, A.G., Soliman, A.M.: General fractional order mem-elements mutators. Microelectron. J. 90, 211–221 (2019)

    Article  Google Scholar 

  5. Ginoux J.-M., Rossetto, B.: The singing arc: the oldest memristor? In: Chaos, CNN, Memristors and Beyond: A Festschrift for Leon Chua With DVD-ROM, composed by Eleonora Bilotta, pp. 494–507. World Scientific (2013)

    Google Scholar 

  6. Erokhin, V., Berzina, T., Fontana, M.P.: Hybrid electronic device based on polyaniline-polyethyleneoxide junction. J. Appl. Phys. 97(6), 064501 (2005)

    Article  Google Scholar 

  7. Martinsen, Ø.G., Grimnes, S., Lütken, C.A., Johnsen, G.K.: Memristance in human skin. J. Phys. Conf. Ser. 224, 012071. IOP Publishing (2010)

    Google Scholar 

  8. Pabst, O., Martinsen, Ø.G., Chua, L.: The non-linear electrical properties of human skin make it a generic memristor. Sci. Rep. 8(1), 1–9 (2018)

    Google Scholar 

  9. Pabst, O., Martinsen, Ø.G., Chua, L.: Information can be stored in the human skin memristor which has non-volatile memory. Sci. Rep. 0(1), 1–10 (2019)

    Google Scholar 

  10. Prasad Kosta, S., Kosta, Y.P., Bhatele, M., Dubey, Y.M., Gaur, A., Kosta, S., Gupta, J., Patel, A., Patel, B.: Human blood liquid memristor. Int. J. Med. Eng. Inform. 3(1), 16–29 (2011)

    Google Scholar 

  11. Volkov, A.G., Tucket, C., Reedus, J., Volkova, M.I., Markin, V.S., Chua, L.: Memristors in plants. Plant Signal. Behavior 9(3), e28152 (2014)

    Google Scholar 

  12. Volkov, A.G., Chua, L.: Cyclic voltammetry of volatile memristors in the venus flytrap: short-term memory. Funct. Plant Biol. 48(6), 567–572 (2021)

    Google Scholar 

  13. Volkov, A.G., Markin, V.S.: Electrochemistry of gala apples: memristors in vivo. Russ. J. Electrochem. 53(9), 1011–1018 (2017)

    Google Scholar 

  14. Abdelrahman, D.K., Mohammed, R., Fouda, M.E., Said, L.A., Radwan, A.G.: Memristive bio-impedance modeling of fruits and vegetables. IEEE Access 9, 21498–21506 (2021)

    Google Scholar 

  15. Gale, E., Adamatzky, A., de Lacy Costello, c.B.: BioNanoScience 5(1), 1–8 (2015)

    Google Scholar 

  16. Braund, E., Reck Miranda, E.: On building practical biocomputers for real-world applications: receptacles for culturing slime mould memristors and component standardisation. J. Bionic Eng. 14(1), 151–162 (2017)

    Google Scholar 

  17. del Rocío Cantero, M., Perez, P.L., Scarinci, N., Cantiello, H.F.: Two-dimensional brain microtubule structures behave as memristive devices. Sci. Rep. 9(1), 1–10 (2019)

    Google Scholar 

  18. Chiolerio, A., Draper, T.C., Mayne, R., Adamatzky, A.: On resistance switching and oscillations in tubulin microtubule droplets. J. Colloid Interface Sci. 560, 589–595 (2020)

    Google Scholar 

  19. Tuszynski, J.A., Friesen, D., Freedman, H., Sbitnev, V.I., Kim, H., Santelices, I., Kalra, A.P., Patel, S.D., Shankar, K., Chua, L.O.: Microtubules as sub-cellular memristors. Sci. Rep. 10(1), 1–11 (2020)

    Google Scholar 

  20. More, G.M., Tiwari, A.P., Pawar, K.D., Dongale, T.D., Geun Kim, T.: Bipolar resistive switching in biomaterials: case studies of dna and melanin-based bio-memristive devices. In: Mem-Elements for Neuromorphic Circuits with Artificial Intelligence Applications, pp. 299–323. Elsevier (2021)

    Google Scholar 

  21. Sun, B., Guo, T., Zhou, G., Wu, J., Chen, Y., Norman Zhou, Y., Wu, Y.A.: A battery-like self-selecting biomemristor from earth-abundant natural biomaterials. ACS Appl. Bio Mater. 4(2), 1976–1985 (2021)

    Google Scholar 

  22. Adamatzky, A.: On spiking behaviour of oyster fungi pleurotus djamor. Sci. Rep. 8(1), 1–7 (2018)

    Article  MathSciNet  Google Scholar 

  23. Adamatzky, A., Tuszynski, J., Pieper, J., Nicolau, D.V., Rinalndi, R., Sirakoulis, G., Erokhin, V., Schnauss, J., Smith, D.M.: Towards cytoskeleton computers. A proposal. In: Adamatzky, A., Akl, S., Sirakoulis, G. (eds.) From Parallel to Emergent Computing. CRC Group/Taylor & Francis (2019)

    Google Scholar 

  24. Adamatzky, A., Ayres, P., Belotti, G., Wösten, H.: Fungal architecture position paper. Int. J. Unconv. Comput. 14 (2019)

    Google Scholar 

  25. Borghetti, J., Snider, G.S., Kuekes, P.J., Joshua Yang, J., Stewart, D.R., Stanley Williams, R.: ‘memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464(7290), 873–876 (2010)

    Google Scholar 

  26. Kvatinsky, S., Satat, G., Wald, N., Friedman, E.G., Kolodny, A., Weiser, U.C.: Memristor-based material implication (imply) logic: design principles and methodologies. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 22(10), 2054–2066 (2013)

    Google Scholar 

  27. Linn, E., Rosezin, R., Tappertzhofen, S., Böttger, U., Waser, R.: Beyond von neumann-logic operations in passive crossbar arrays alongside memory operations. Nanotechnology 23(30), 305205 (2012)

    Google Scholar 

  28. Kvatinsky, S., Belousov, D., Liman, S., Satat, G., Wald, N., Friedman, E.G., Kolodny, A., Weiser, U.C.: Magic-memristor-aided logic. IEEE Trans. Circuits Syst. II: Express Br. 61(11), 895–899 (2014)

    Google Scholar 

  29. Borghetti, J., Li, Z., Straznicky, J., Li, X., Ohlberg, D.A.A., Wu, W., Stewart, D.R., Stanley Williams, R.: A hybrid nanomemristor/transistor logic circuit capable of self-programming. Proc. Natl. Acad. Sci. 106(6), 1699–1703 (2009)

    Google Scholar 

  30. Ho, Y., Huang, G.M., Li, P.: Nonvolatile memristor memory: device characteristics and design implications. In: Proceedings of the 2009 International Conference on Computer-Aided Design, pp. 485–490 (2009)

    Google Scholar 

  31. Adamatzky, A., Nikolaidou, A., Gandia, A., Chiolerio, A., Mahdi Dehshibi, M.: Reactive fungal wearable. Biosystems 199, 104304 (2021)

    Article  Google Scholar 

  32. Adamatzky, A., Gandia, A., Chiolerio, A.: Fungal sensing skin. Fungal Biol. Biotechnol. 8(1), 1–6 (2021)

    Google Scholar 

  33. Li, J., Xin, M., Ma, Z., Shi, Y., Pan, L.: Nanomaterials and their applications on bio-inspired wearable electronics. Nanotechnology (2021)

    Google Scholar 

  34. Karana, E., Blauwhoff, D., Hultink, E.-J., Camere, S.: When the material grows: a case study on designing (with) mycelium-based materials. Int. J. Des. 12(2) (2018)

    Google Scholar 

  35. Jones, M., Mautner, A., Luenco, S., Bismarck, A., John, S.: Engineered mycelium composite construction materials from fungal biorefineries: a critical review. Mater. Des. 187, 108397 (2020)

    Article  Google Scholar 

  36. Cerimi, K., Can Akkaya, K., Pohl, C., Schmidt, B., Neubauer, P.: Fungi as source for new bio-based materials: a patent review. Fungal Biol. Biotechnol. 6(1), 1–10 (2019)

    Google Scholar 

  37. Pelletier, M.G., Holt, G.A., Wanjura, J.D., Bayer, E., McIntyre, G.: An evaluation study of mycelium based acoustic absorbers grown on agricultural by-product substrates. Ind. Crops Prod. 51, 480–485 (2013)

    Google Scholar 

  38. Elsacker, E., Vandelook, S., Van Wylick, A., Ruytinx, J., De Laet, L., Peeters, E.: A comprehensive framework for the production of mycelium-based lignocellulosic composites. Sci. Total Environ. 725, 138431 (2020)

    Article  Google Scholar 

  39. Robertson, O. et al.: Fungal future: A review of mycelium biocomposites as an ecological alternative insulation material. In: DS 101: Proceedings of NordDesign 2020, Lyngby, Denmark, 12th-14th August 2020, pp. 1–13 (2020)

    Google Scholar 

  40. Yang, Z., Zhang, F., Still, B., White, M., Amstislavski, P.: Physical and mechanical properties of fungal mycelium-based biofoam. J. Mater. Civil Eng. 29(7), 04017030 (2017)

    Article  Google Scholar 

  41. Xing, Y., Brewer, M., El-Gharabawy, H., Griffith, G., Jones, P.: Growing and testing mycelium bricks as building insulation materials. In: IOP Conference Series: Earth and Environmental Science, vol. 121, pp. 022032. IOP Publishing (2018)

    Google Scholar 

  42. Girometta, C., Maria Picco, A., Michela Baiguera, R., Dondi, D., Babbini, S., Cartabia, M., Pellegrini, M., Savino, E.: Physico-mechanical and thermodynamic properties of mycelium-based biocomposites: a review. Sustainability 11(1), 281 (2019)

    Google Scholar 

  43. Pereira Dias, P., Bhagya Jayasinghe, L., Waldmann, D.: Investigation of mycelium-miscanthus composites as building insulation material. Results Mater. 10, 100189 (2021)

    Google Scholar 

  44. Wang, F., Li, H.-q., Kang, S.-s., Bai, Y.-f., Cheng, G.-z., Zhang, G.-q.: The experimental study of mycelium/expanded perlite thermal insulation composite material for buildings. Sci. Technol. Eng. 2016, 20 (2016)

    Google Scholar 

  45. Pablo Cárdenas-R, J.: Thermal insulation biomaterial based on hydrangea macrophylla. In: Bio-Based Materials and Biotechnologies for Eco-Efficient Construction, pp. 187–201. Elsevier (2020)

    Google Scholar 

  46. Holt, G.A., Mcintyre, G., Flagg, D., Bayer, E., Wanjura, J.D., Pelletier, M.G.: Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material: evaluation study of select blends of cotton byproducts. J. Biobased Mater. Bioenergy 6(4), 431–439 (2012)

    Google Scholar 

  47. Sivaprasad, S., Byju, S.K., Prajith, C., Shaju, J., Rejeesh, C.R.: Development of a novel mycelium bio-composite material to substitute for polystyrene in packaging applications. Mater. Today Proc. (2021)

    Google Scholar 

  48. Mojumdar, A., Tanaya Behera, H., Ray, L.: Mushroom mycelia-based material: an environmental friendly alternative to synthetic packaging. Microb. Polym. pp. 131–141 (2021)

    Google Scholar 

  49. Adamatzky, A., Tegelaar, M., Wosten, H.A.B., Powell, A.L., Beasley, A.E., Mayne, R.: On boolean gates in fungal colony. Biosystems 193, 104138 (2020)

    Google Scholar 

  50. Adamatzky, A., Gandia, A., Ayres, P., Wösten, H., Tegelaar, M.: Adaptive fungal architectures. LINKs-series 5, 66–77

    Google Scholar 

  51. Yin, Z., Tian, H., Chen, G., Chua, L.O.: What are memristor, memcapacitor, and meminductor? IEEE Trans. Circuits Syst. II: Express Briefs 62(4), 402–406 (2015)

    Google Scholar 

  52. Schütte, K.H.: Translocation in the fungi. New Phytol. 55(2), 164–182 (1956)

    Google Scholar 

  53. Jennings, D.H.: Translocation of solutes in fungi. Biol. Rev. 62(3), 215–243 (1987)

    Article  Google Scholar 

  54. Chua, L.: If it’s pinched it’s a memristor. Semicond. Sci. Technol. 29(10), 104001 (2014)

    Article  Google Scholar 

  55. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  56. Chiolerio, A., Draper, T.C., Mayne, R., Adamatzky, A.: On resistance switching and oscillations in tubulin microtuble droplets. J. Colloid Interface Sci. 560, 589–595 (2020)

    Google Scholar 

  57. Erokhin, V., Fontana, M.P.: Electrochemically controlled polymeric device: a memristor (and more) found two years ago (2008). arXiv:0807.0333

  58. Gale, E., Pearson, D., Kitson, S., Adamatzky, A., de Lacy Costello, B.: The effect of changing electrode metal on solution-processed flexible titanium dioxide memristors. Mater. Chem. Phys. 162, 20–30 (2015)

    Google Scholar 

  59. Gale, E., de Lacy Costello, B., Adamatzky, A.: Emergent spiking in non-ideal memristor networks. Microelectron. J. 45(11), 1401–1415 (2014)

    Google Scholar 

  60. Bo, Y., Zhang, P., Zhang, Y., Song, J., Li, S., Liu, X.: Spiking dynamic behaviors of nbo2 memristive neurons: a model study. J. Appl. Phys. 127(24), 245101 (2020)

    Article  Google Scholar 

  61. Serrano-Gotarredona, T., Prodromakis, T., Linares-Barranco, B.: A proposal for hybrid memristor-CMOS spiking neuromorphic learning systems. IEEE Circuits Syst. Mag. 13(2), 74–88 (2013)

    Article  Google Scholar 

  62. Indiveri, G., Linares-Barranco, B., Legenstein, R., Deligeorgis, G., Prodromakis, T.: Integration of nanoscale memristor synapses in neuromorphic computing architectures. Nanotechnology 24(38), 384010 (2013)

    Article  Google Scholar 

  63. Prezioso, M., Zhong, Y., Gavrilov, D., Merrikh-Bayat, F., Hoskins, B., Adam, G., Likharev, K., Strukov, D.: Spiking neuromorphic networks with metal-oxide memristors. In: 2016 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 177–180. IEEE (2016)

    Google Scholar 

  64. Pickett, M.D., Medeiros-Ribeiro, G., Stanley Williams, R.: A scalable neuristor built with mott memristors. Nat. Mater. 12(2), 114–117 (2013)

    Google Scholar 

  65. Linares-Barranco, B., Serrano-Gotarredona, T., Camuñas-Mesa, L.A., Perez-Carrasco, J.A., Zamarreño-Ramos, C., Masquelier, T.: On spike-timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex. Front. Neurosci. 5, 26 (2011)

    Google Scholar 

  66. Indiveri, G., Liu, S.-C.: Memory and information processing in neuromorphic systems. Proc. IEEE 103(8), 1379–1397 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Adamatzky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beasley, A.E., Abdelouahab, MS., Lozi, R., Tsompanas, MA., Adamatzky, A. (2023). Mem-Fractive Properties of Fungi. In: Adamatzky, A. (eds) Fungal Machines. Emergence, Complexity and Computation, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-031-38336-6_15

Download citation

Publish with us

Policies and ethics