Skip to main content

ResNet-50-CNN and LSTM Based Arrhythmia Detection Model Based on ECG Dataset

  • Chapter
  • First Online:
Enabling Person-Centric Healthcare Using Ambient Assistive Technology

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1108))

  • 170 Accesses

Abstract

The ECG is a critical component of computer-aided arrhythmia detection systems since it helps to reduce the rise in the death rate from disorders of the circulatory system. However, due to the intricate changes and imbalance of electrocardiogram beats, this is a difficult problem to solve. This study provides an innovative and enhanced ResNet-50 model using a Conv-1D model with Long Short Term Memory (LSTM) based on Convolution Neural Network (CNN) approach for arrhythmia identification using ECG data, including proper parameter optimization and model training. The results of applying the proposed model to the MIT-BIH arrhythmia database demonstrates that the model performs better, having an accuracy of 98.7% and a MSE of 0.06 when compared to other classification methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Guleria, P., Naga Srinivasu, P., Ahmed, S., Almusallam, N., & Alarfaj, F. K. (2022). XAI framework for cardiovascular disease prediction using classification techniques. Electronics, 11(24), 4086. https://doi.org/10.3390/electronics11244086

    Article  Google Scholar 

  2. Saya, S., Hennebry, T. A., Lozano, P., Lazzara, R., & Schechter, E. (2008). Coronary slow flow phenomenon and risk for sudden cardiac death due to ventricular arrhythmias: A case report and review of literature. Clinical Cardiology, 31(8), 352–355.

    Article  Google Scholar 

  3. World Health Organization. (2019). Cardiovascular Diseases (CVDs). WHO.

    Google Scholar 

  4. National Heart, Lung, and Blood Institute. (2019). Arrhythmia, National Heart, Lung, and Blood Institute.

    Google Scholar 

  5. Min, S., Lee, B., & Yoon, S. (2017). Deep learning in bioinformatics. Briefings in Bioinformatics, 18, 851–869.

    Google Scholar 

  6. Sanders, R. A., Kurosawa, T. A., & Sist, M. D. (2018). Ambulatory electrocardiographic evaluation of the occurrence of arrhythmias in healthy Salukis. Journal of the American Veterinary Medical Association, 252(8), 966–969.

    Article  Google Scholar 

  7. Sannino, G., & de Pietro, G. (2018). A deep learning approach for ECG-based heartbeat classification for arrhythmia detection. Future Generation Computer Systems, 86(Sep.), 446–455.

    Google Scholar 

  8. Wang, J., Ye, Y., Pan, X., & Gao, X. (2015). Parallel-type fractional zero-phase filtering for ECG signal denoising. Biomedical Signal Processing and Control, 18, 36–41.

    Article  Google Scholar 

  9. Xie, L., Li, Z., Zhou, Y., He, Y., & Zhu, J. (2020). Computational diagnostic techniques for electrocardiogram signal analysis. Sensors, 20(21), 6318.

    Article  Google Scholar 

  10. Katircioglu-Öztürk, D., Güvenir, H. A., Ravens, U., & Baykal, N. (2017). A window-based time series feature extraction method. Computers in Biology and Medicine, 89, 466–486.

    Article  Google Scholar 

  11. Jung, Y., & Kim, H. (2017). Detection of PVC by using a wavelet-based statistical ECG monitoring procedure. Biomedical Signal Processing And Control, 36, 176–182.

    Article  Google Scholar 

  12. Naga Srinivasu, P., Srinivas, G., & Srinivas Rao, T. (2016). An Automated Brain MRI image segmentation using a Generic Algorithm and TLBO. International Journal of Control Theory and Applications, 9(32), 233–241.

    Google Scholar 

  13. Raj, S., Ray, K. C., & Shankar, O. (2016). Cardiac arrhythmia beat classification using DOST and PSO tuned SVM. Computer Methods and Programs in Biomedicine, 136, 163–177.

    Article  Google Scholar 

  14. Casas, M. M., Avitia, R. L., Gonzalez-Navarro, F. F., Cardenas-Haro, J. A., & Reyna, M. A. (2018). Bayesian classification models for premature ventricular contraction detection on ECG traces. Journal Of Healthcare Engineering, 2018, Article ID 2694768, 7 pages.

    Google Scholar 

  15. Kiranyaz, S., Ince, T., & Gabbouj, M. (2016). Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE Transactions on Biomedical Engineering, 63(3), 664–675.

    Article  Google Scholar 

  16. Dózsa, T., Bognár, G., & Kovács, P. (2020). Ensemble learning for heartbeat classification using adaptive orthogonal transformations. In Computer aided systems Theory–EUROCAST 2019. Lecture notes in computer science (vol. 12014). Springer.

    Google Scholar 

  17. deChazal, P., O'Dwyer, M., & Reilly, R. B. (2004). Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Transactions on Biomedical Engineering, 51(7), 1196–1206.

    Google Scholar 

  18. Saini, I., Singh, D., & Khosla, A. (2014). Electrocardiogram beat classification using empirical mode decomposition and multiclass directed acyclic graph support vector machine. Computers & Electrical Engineering, 40(5), 1774–1787.

    Article  Google Scholar 

  19. Thomas, M., Das, M. K., & Ari, S. (2015). Automatic ECG arrhythmia classification using dual tree complex wavelet based features. AEU-International Journal of Electronics and Communications, 69(4), 715–721.

    Google Scholar 

  20. Srinivasu, P. N., Shafi, J., Krishna, T. B., Sujatha, C. N., Praveen, S. P., & Ijaz, M. F. (2022). Using recurrent neural networks for predicting Type-2 diabetes from genomic and tabular data. Diagnostics, 12(12), 3067. https://doi.org/10.3390/diagnostics12123067

    Article  Google Scholar 

  21. Maggiori, E., Tarabalka, Y., Charpiat, G., & Alliez, P. (2017). Convolutional neural networks for large-scale remote-sensing image classification. IEEE Transactions on Geoscience and Remote Sensing, 55(2), 645–657.

    Article  Google Scholar 

  22. Russakovsky, O., Deng, J., Su, H., et al. (2015). ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 115(3), 211–252.

    Article  MathSciNet  Google Scholar 

  23. Lu, P., Guo, S., Zhang, H., et al. (2018). Research on improved depth belief network-based prediction of cardiovascular diseases. Journal of Healthcare Engineering, 2018, Article ID 8954878, 9 pages.

    Google Scholar 

  24. Acharya, U. R., Oh, S. L., Hagiwara, Y., et al. (2017). A deep convolutional neural network model to classify heartbeats. Computers In Biology and Medicine, 89, 389–396.

    Article  Google Scholar 

  25. Li, W., & Li, J. (2018). Local deep field for electrocardiogram beat classification. IEEE Sensors Journal, 18(4), 1656–1664.

    Article  Google Scholar 

  26. Yıldırım, O., Pławiak, P., Tan, R.-S., & Acharya, U. R. (2018). Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Computers in Biology and Medicine, 102, 411–420.

    Article  Google Scholar 

  27. Hannun, A. Y., Rajpurkar, P., Haghpanahi, M., et al. (2019). Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nature Medicine, 25(1), 65–69.

    Article  Google Scholar 

  28. Oh, S. L., Ng, E. Y. K., Tan, R. S., & Acharya, U. R. (2019). Automated beat-wise arrhythmia diagnosis using modified U-net on extended electrocardiographic recordings with heterogeneous arrhythmia types. Computers in Biology and Medicine, 105, 92–101.

    Article  Google Scholar 

  29. Xu, S. S., Mak, M. W., & Cheung, C. C. (2019). Towards end-to-end ECG classification with raw signal extraction and deep neural networks. IEEE Journal of Biomedical and Health Informatics, 23(4), 1574–1584.

    Article  Google Scholar 

  30. Xiang, Y., Luo, J., Zhu, T., Wang, S., Xiang, X., & Meng, J. (2018). ECG-based heartbeat classification using two-level convolutional neural network and RR interval difference. Ice Transactions on Information & Systems, E101.D(4), 1189–1198.

    Google Scholar 

  31. Wei Jiang, & Seong Kong, G. (2007). Block-based neural networks for personalized ECG signal classification. IEEE Transactions on Neural Networks, 18(6), 1750–1761.

    Google Scholar 

  32. Sellami, A., & Hwang, H. (2019). A robust deep convolutional neural network with batch-weighted loss for heartbeat classification. Expert Systems with Applications, 122(May), 75–84.

    Article  Google Scholar 

  33. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA.

    Google Scholar 

  34. Enbiao Jing, Haiyang Zhang, ZhiGang Li, Yazhi Liu, Zhanlin Ji, Ivan Ganchev. (2021). ECG heartbeat classification based on an improved ResNet-18 model. Computational and Mathematical Methods in Medicine, 2021, Article ID 6649970, 13 pages. https://doi.org/10.1155/2021/6649970

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sriramalakshmi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, O., Singh, A., Sinha, A., Garg, C.V., Sriramalakshmi, P. (2023). ResNet-50-CNN and LSTM Based Arrhythmia Detection Model Based on ECG Dataset. In: Barsocchi, P., Parvathaneni, N.S., Garg, A., Bhoi, A.K., Palumbo, F. (eds) Enabling Person-Centric Healthcare Using Ambient Assistive Technology. Studies in Computational Intelligence, vol 1108. Springer, Cham. https://doi.org/10.1007/978-3-031-38281-9_8

Download citation

Publish with us

Policies and ethics