Skip to main content

Ambient Healthcare: A New Paradigm in Medical Zone

  • Chapter
  • First Online:
Enabling Person-Centric Healthcare Using Ambient Assistive Technology

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1108))

  • 151 Accesses

Abstract

Ambient intelligence (AmI), a new paradigm in artificial intelligence, seeks to enhance people's abilities by utilizing sensitive digital surroundings that are responsive to human requirements, routines, activities, and emotions. With the use of perceptive communications that are intrusive, covert, and proactive, future society will be able to communicate with humans and machines in novel ways. Such AmI technology is a result of cutting-edge interaction paradigms. An appropriate choice for developing a variety of workable solutions, notably in the field of healthcare. To provide the necessary context for the scientific community, this survey will explore the development of AmI approaches in the healthcare industry. We will discuss the infrastructure and technology required to implement AmI's vision, such as smart environments and wearable medical technologies. The most recent artificial intelligence (AI) development approaches used to produce AmI systems in the healthcare area will be outlined. making use of a variety of learning strategies (to learn from user interaction), reasoning techniques (to reason about the aims and objectives of users), and planning approaches (for organising activities and interactions). We'll also go over the possible advantages of AmI technology for those with various long-term physical, mental, or emotional conditions. In order to determine new avenues for future studies, we will showcase some of the successful case studies in the field and examine current and upcoming difficulties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. European Commission Eurostat: Causes of death statistics 2011. Available from: http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Causes_of_death_statistics.

  2. Sahoo, P. K., Mishra, S., Panigrahi, R., Bhoi, A. K., & Barsocchi, P. (2022). An improvised deep-learning-based mask R-CNN model for laryngeal cancer detection using CT images. Sensors, 22(22), 8834.

    Article  Google Scholar 

  3. Srinivasu, P. N., Sandhya, N., Jhaveri, R. H., & Raut, R. (2022). From blackbox to explainable AI in healthcare: Existing tools and case studies. Mobile Information Systems, 20. Article ID 8167821. https://doi.org/10.1155/2022/8167821

  4. Mishra, S., Thakkar, H. K., Singh, P., & Sharma, G. (2022). A decisive metaheuristic attribute selector enabled combined unsupervised-supervised model for chronic disease risk assessment. Computational Intelligence and Neuroscience.

    Google Scholar 

  5. Weiser, M. (1993). Some computer science issues in ubiquitous computing. Special issue on computer augmented environments: Back to the real world. Communications of the ACM, 36(7), 75–84.

    Article  Google Scholar 

  6. Tapia, D. I., Abraham, A., Corchado, J. M., & Alonso, R. S. (2010). Agents and ambient intelligence: Case studies. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-009-0006-2

  7. Aarts, E., & Roovers, R. (2003). Embedded system design issues in ambient intelligence. In T. Basten, M. Geilen, & H. D. Groot (Eds.), Ambient intelligence: Impact on embedded system design (pp. 11–29). Kluwer.

    Chapter  Google Scholar 

  8. Chen, M., Gonzalez, S., Vasilakos, A., Cao, H., & Leung, V. C. (2011, April). Body area networks: A survey. Mobile Networks and Applications, 16(2), 171–193. https://doi.org/10.1007/s11036-010-0260-8.

  9. Latré, B., Braem, B., Moerman, I., Blondia, C., & Demeester, P. (2011, January). A survey on wireless body area networks. Wireless Networks, 17(1), 1–18.

    Google Scholar 

  10. Lyytinen, K., & Yoo, Y. (2002). Issues and challenges in ubiquitous computing. Communications of the ACM, 45(12), 63–65.

    Google Scholar 

  11. Sivani, T., & Mishra, S. (2022). Wearable devices: Evolution and usage in remote patient monitoring system. In Connected e-Health (pp. 311–332). Springer.

    Google Scholar 

  12. Mohapatra, S. K., Mishra, S., Tripathy, H. K., & Alkhayyat, A. (2022). A sustainable data-driven energy consumption assessment model for building infrastructures in resource constraint environment. Sustainable Energy Technologies and Assessments, 53, 102697

    Google Scholar 

  13. Phillips Research. (2007). Ambient intelligence: Changing lives for the better. www.research.phillips.com/.

  14. Rech, J., & Althoff, K.-D. (2004). Artificial intelligence and software engineering: Status and future trends. Themenschwerpunkt K & SE, KI, 3, 5–11.

    Google Scholar 

  15. Mishra, S., Jena, L., Tripathy, H. K., & Gaber, T. (2022). Prioritized and predictive intelligence of things enabled waste management model in smart and sustainable environment. PloS One, 17(8), e0272383.

    Google Scholar 

  16. Guleria, P., Ahmed, S., Alhumam, A., & Srinivasu, P. N. (2022). Empirical study on classifiers for earlier prediction of COVID-19 infection cure and death rate in the Indian states. Healthcare, 10(1), 85. https://doi.org/10.3390/healthcare10010085

    Article  Google Scholar 

  17. Praveen, S. P., Jyothi, V. E., Anuradha, C., VenuGopal, K., Shariff, V., & Sindhura, S. (2022). Chronic kidney disease prediction using ML-based neuro-fuzzy model. International Journal of Image and Graphics, 2340013. https://doi.org/10.1142/S0219467823400132

  18. Gao, T., Massey, T., Selavo, L., Crawford, D., Rong Chen, B., Lorincz, K., Shnayder, V., Hauenstein, L., Dabiri, F., Jeng, J., Chanmugam, A., White, D., Sarrafzadeh, M., & Welsh, M. (2007, September). The advanced health and disaster aid network: A light-weight wireless medical system for triage. IEEE Transactions on Biomedical Circuits and Systems, 1(3), 203–216.

    Google Scholar 

  19. He, D., Chen, C., Chan, S., Bu, J., & Vasilakos, A. (2012, July). Retrust: Attack-resistant and lightweight trust management for medical sensor networks. IEEE Transactions on Information Technology in Biomedicine, 16(4), 623–632.

    Google Scholar 

  20. Pauwels, E., Salah, A., & Tavenard, R. (2007, October). Sensor networks for ambient intelligence. In Proceedings of IEEE 9th Workshop Multimedia Signal Processing, October 2007, pp. 13–16.

    Google Scholar 

  21. Mishra, S., Panda, A., & Tripathy, K. H. (2018). Implementation of re-sampling technique to handle skewed data in tumor prediction. Journal of Advanced Research in Dynamical and Control Systems, 10(14), 526–530.

    Google Scholar 

  22. Guo, W. W., Healy, W. M., & Zhou, M. (2011, March). Wireless mesh networks in intelligent building automation control: A survey. International Journal of Intelligent Control Systems, 16(1), 28–36.

    Google Scholar 

  23. Mishra, S., Dash, A., & Mishra, B. K. (2020). An insight of Internet of Things applications in pharmaceutical domain. In Emergence of pharmaceutical industry growth with industrial IoT approach (pp. 245–273). Academic Press.

    Google Scholar 

  24. Mishra, S., Tripathy, H. K., & Acharya, B. (2021). A precise analysis of deep learning for medical image processing. In Bio-inspired recomputing (pp. 25–41). Springer.

    Google Scholar 

  25. Wu, G., & Xue, S. (2008). Portable pre impact fall detector with inertial sensors. IEEE Transactions on Neural Systems Rehabilitation Engineering, 16(2), 178–183 [Pub Med] [Google Scholar].

    Google Scholar 

  26. Lai, C., Chang, S., Chao, H., & Huang, Y. (2011). Detection of cognitive injured body region using multiple trickily accelerometers for elderly falling. IEEE Sensors Journal, 11(3), 763–770 [Google Scholar].

    Google Scholar 

  27. Zhuang, X., Huang, J., Potamianos, G., & Hasegawa-Johnson, M. (2009). Acoustic fall detection using Gaussian mixture models and gem super-vectors. In IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2009 (pp. 69–72). IEEE [Google Scholar].

    Google Scholar 

  28. Alwan, M., Rajendran, P., Kell, S., Mack, D., Dalai, S., & Wolfe, M., & Felder, R. (2006). A smart and passive floor-vibration based fall detector for elderly. In 2006 2nd International Conference on Information and Communication Technologies, ICTTA’06 (Vol. 1, pp. 1003–1007). IEEE [Google Scholar].

    Google Scholar 

  29. Mukherjee, D., Tripathy, H. K., & Mishra, S. (2021). Scope of medical bots in clinical domain. In Technical advancements of machine learning in healthcare (pp. 339–363). Springer.

    Google Scholar 

  30. Shi, G., Chan, C., Li, W., Leung, K., Zou, Y., & Jin, Y. (2009). Mobile human airbag system for fall protection using MEMS sensors and embedded SVM classifier. Sensors, 9(5), 495–503 [Google Scholar].

    Google Scholar 

  31. Wu, W., Au, L., Jordan, B., Stathopoulos, T., Batalin, M., Kaiser, W., Vahdatpour, A., Sarrafzadeh, M., Fang, M., & Chodosh, J. (2008). The smartcane system: An assistive device for geriatrics. In International Conference on Body Area Networks (pp. 1–4) [Google Scholar].

    Google Scholar 

  32. Haux, R. (2006). Individualization, globalisation and health about sustainable information technologies and the aim of medical informatics. International Journal of Medical Informatics, 75, 795–808 [PubMed] [Google Scholar].

    Google Scholar 

  33. Jena, K. C., Mishra, S., Sahoo, S., & Mishra, B. K. (2017, January). Principles, techniques and evaluation of recommendation systems. In 2017 International Conference on Inventive Systems and Control (ICISC) (pp. 1–6). IEEE.

    Google Scholar 

  34. Patel, S., Park, H., Bonato, P., Chan, L., & Rodgers, M. (2012). A review of wearable sensors and systems with application in rehabilitation. Journal of Neuro Engineering and Rehabilitation, 9(1), 21 [Online]. Available: http://www.jneuroengrehab.com/content/9/1/21 [PMC free article] [PubMed] [Google Scholar].

  35. Jarochowski, B. P., Shin, S., Ryu, D., & Kim, H. (2007). Ubiquitous rehabilitation center: An implementation of a wireless sensor network based rehabilitation management system. In Proceedings of the 2007 International Conference on Convergence Information Technology, ser. ICCIT‘07 (pp. 2349–2358). IEEE Computer Society, Washington, DC, USA. [Online]. https://doi.org/10.1109/ICCIT.2007.383 [Google Scholar].

  36. Piotrowicz, E., Jasionowska, A., Banaszak-Bednarczyk, M., Gwilkowska, J., & Piotrowicz, R. (2012). ECG telemonitoring during home-based cardiac rehabilitation in heart failure patients. Journal of Telemedicine and Telecare, 18(4), 193–197 [PubMed] [Google Scholar].

    Google Scholar 

  37. Helmer, A., Song, B., Ludwig, W., Schulze, M., Eichelberg, M., Hein, A., Tegtbur, U., Kayser, R., Haux, R., & Marschollek, M. (2010). A sensor-enhanced health information system to support automatically controlled exercise training of COPD patients. In 2010 4th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), March, pp. 1–6. NO PERMISSIONS [Google Scholar].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushruta Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Samanta, S., Mitra, A., Mishra, S., Parvathaneni, N.S. (2023). Ambient Healthcare: A New Paradigm in Medical Zone. In: Barsocchi, P., Parvathaneni, N.S., Garg, A., Bhoi, A.K., Palumbo, F. (eds) Enabling Person-Centric Healthcare Using Ambient Assistive Technology. Studies in Computational Intelligence, vol 1108. Springer, Cham. https://doi.org/10.1007/978-3-031-38281-9_11

Download citation

Publish with us

Policies and ethics