Skip to main content

Optimized TSA ResNet Architecture with TSH—Discriminatory Features for Kidney Stone Classification from QUS Images

  • Chapter
  • First Online:
Enabling Person-Centric Healthcare Using Ambient Assistive Technology

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1108))

Abstract

Kidney diseases are the major reason for renal failure. Ranging from calcium deposits, stones, and to the maximum extent of chronic kidney disease, there are multiple classifications of that which may cause renal failure and lead to a large proportion of mortality. Qualitative Ultrasound images are usually preferred as the ground for examining the kidney in medical contexts. In recent times Computer-Aided Diagnosis of kidney health analysis has paved the way for the effective detection of diseases at early stages by employing convolutional Neural Networks and their allied versions of deep learning technologies. The availability of these algorithms in a simulated environment yields better results when compared to images taken in real-time cases. The performance of these algorithms is confined within a limited level of performance metrics such as accuracy and sensitivity. To address these issues, we have focussed on building an automated diagnosis of kidney diseases and classifying it according to their features illustrated in the QUS images. The anticipated methodology in this work merges the texture, statistical and histogram-based features (TSH) which are discriminative when compared with other features exhibited by the QUS, then these TSH features are employed in ResNet architecture for successful recognition of kidney diseases. The observance in the reduction of accuracy due to the improper training of the hyperparameters such as momentum and learning rate of CNN is obliterated with the usage of the position-based optimization algorithm, namely the Tree Seed Algorithm. The output of the classification was analysed through the performance analysis for the optimization-tuned kidney image standard dataset. The results from the ResNet model with TSA optimization show quite good efficiency of using an algorithmic approach in tuning deep learning architectures. Further exploration of the momentum and learning rate of the Resnet architecture makes the proposed TSH-TSA-Resnet architecture outperform the existing method and provide a classification accuracy of 98.9%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Edvardsson, V. O., Indridason, O. S., Haraldsson, G., Kjartansson, O., & Palsson, R. (2013). Temporal trends in the incidence of kidney stone disease. Kidney International, 83(1), 146–152.

    Article  Google Scholar 

  2. Kumar, K., & Abhishek, B. (2012). Artificial neural networks for diagnosis of kidney stones disease (Vol. 10). GRIN Verlag.

    Google Scholar 

  3. Serrat, J., Lumbreras, F., Blanco, F., Valiente, M., & López-Mesas, M. (2017). myStone: A system for automatic kidney stone classification. Expert Systems with Applications, 89, 41–51.

    Article  Google Scholar 

  4. Howles, S. A., & Thakker, R. V. (2020). Genetics of kidney stone disease. Nature Reviews Urology, 17(7), 407–421.

    Article  Google Scholar 

  5. Schaeffer, A. J., Feng, Z., Trock, B. J., Mathews, R. I., Neu, A. M., Gearhart, J. P., & Matlaga, B. R. (2011). Medical comorbidities associated with pediatric kidney stone disease. Urology, 77(1), 195–199.

    Article  Google Scholar 

  6. Praveen, S. P., Srinivasu, P. N., Shafi, J., Wozniak, M., & Ijaz, M. F. (2022). ResNet-32 and FastAI for diagnoses of ductal carcinoma from 2D tissue slides. Scientific Reports, 12, 20804. https://doi.org/10.1038/s41598-022-25089-2

    Article  Google Scholar 

  7. Whitehurst, L., Jones, P., & Somani, B. K. (2019). Mortality from kidney stone disease (KSD) as reported in the literature over the last two decades: A systematic review. World Journal of Urology, 37(5), 759–776.

    Article  Google Scholar 

  8. Kazemi, Y., & Mirroshandel, S. A. (2018). A novel method for predicting kidney stone type using ensemble learning. Artificial Intelligence in Medicine, 84, 117–126.

    Article  Google Scholar 

  9. Novak, T. E., Lakshmanan, Y., Trock, B. J., Gearhart, J. P., & Matlaga, B. R. (2009). Sex prevalence of pediatric kidney stone disease in the United States: An epidemiologic investigation. Urology, 74(1), 104–107.

    Article  Google Scholar 

  10. Ahmed, S., Srinivasu, P. N., Alhumam, A., & Alarfaj, M. (2022). AAL and internet of medical things for monitoring type-2 diabetic patients. Diagnostics, 12, 2739. https://doi.org/10.3390/diagnostics12112739

    Article  Google Scholar 

  11. Sood, A., Sarangi, S., Pandey, A., & Murugiah, K. (2011). YouTube as a source of information on kidney stone disease. Urology, 77(3), 558–562.

    Article  Google Scholar 

  12. Matlaga, B. R., Schaeffer, A. J., Novak, T. E., & Trock, B. J. (2010). Epidemiologic insights into pediatric kidney stone disease. Urological Research, 38(6), 453–457.

    Article  Google Scholar 

  13. Scherer, K., Braig, E., Willer, K., Willner, M., Fingerle, A. A., Chabior, M., Herzen, J., Eiber, M., Haller, B., Straub, M., Schneider, H., & Pfeiffer, F. (2015). Non-invasive differentiation of kidney stone types using X-ray dark-field radiography. Scientific Reports, 5(1), 1–7.

    Article  Google Scholar 

  14. Kahani, M., Tabrizi, S. H., Kamali-Asl, A., & Hashemi, S. (2020). A novel approach to classify urinary stones using dual-energy kidney, ureter and bladder (DEKUB) X-ray imaging. Applied Radiation and Isotopes, 164, 109267.

    Article  Google Scholar 

  15. Thongprayoon, C., Krambeck, A. E., & Rule, A. D. (2020). Determining the true burden of kidney stone disease. Nature Reviews Nephrology, 16(12), 736–746.

    Article  Google Scholar 

  16. Duan, X., Qu, M., Wang, J., Trevathan, J., Vrtiska, T., Williams, J. C., Krambeck, A., Lieske, J., & McCollough, C. (2013). Differentiation of calcium oxalate monohydrate and calcium oxalate dihydrate stones using quantitative morphological information from micro-computerized and clinical computerized tomography. The Journal of Urology, 189(6), 2350–2356.

    Article  Google Scholar 

  17. Singh, P., Enders, F. T., Vaughan, L. E., Bergstralh, E. J., Knoedler, J. J., Krambeck, A. E., Lieske, J. C., & Rule, A. D. (2015, October). Stone composition among first-time symptomatic kidney stone formers in the community. Mayo Clinic Proceedings, 90(10), 1356–1365. Elsevier.

    Google Scholar 

  18. Motamedinia, P., Okhunov, Z., Okeke, Z., & Smith, A. D. (2015). Contemporary assessment of renal stone complexity using cross-sectional imaging. Current Urology Reports, 16(4), 1–7.

    Article  Google Scholar 

  19. Caroli, A., Remuzzi, A., & Lerman, L. O. (2021). Basic principles and new advances in kidney imaging. Kidney International, 100(5), 1001–1011.

    Article  Google Scholar 

  20. D’costa, M. R., Haley, W. E., Mara, K. C., Enders, F. T., Vrtiska, T. J., Pais, V. M., Jacobsen, S. J., McCollough, C. H., Lieske, J. C., & Rule, A. D. (2019). Symptomatic and radiographic manifestations of kidney stone recurrence and their prediction by risk factors: A prospective cohort study. Journal of the American Society of Nephrology, 30(7), 1251–1260.

    Article  Google Scholar 

  21. Nestler, T., Haneder, S., & Hokamp, N. G. (2019). Modern imaging techniques in urinary stone disease. Current Opinion in Urology, 29(2), 81–88.

    Article  Google Scholar 

  22. Cui, X., Zhao, Z., Zhang, G., Chen, S., Zhao, Y., & Lu, J. (2018). Analysis and classification of kidney stones based on Raman spectroscopy. Biomedical Optics Express, 9(9), 4175–4183.

    Article  Google Scholar 

  23. Jendeberg, J., Thunberg, P., & Lidén, M. (2021). Differentiation of distal ureteral stones and pelvic phleboliths using a convolutional neural network. Urolithiasis, 49(1), 41–49.

    Article  Google Scholar 

  24. Wang, R. C., Rodriguez, R. M., Moghadassi, M., Noble, V., Bailitz, J., Mallin, M., Carbo, J., Kang, T. L., Chu, P., Shiboski, S., & Smith-Bindman, R. (2016). External validation of the STONE score, a clinical prediction rule for ureteral stone: An observational multi-institutional study. Annals of Emergency Medicine, 67(4), 423–432.

    Article  Google Scholar 

  25. Schütz, J., Miernik, A., Brandenburg, A., & Schlager, D. (2019). Experimental evaluation of human kidney stone spectra for intraoperative stone-tissue-instrument analysis using autofluorescence. The Journal of Urology, 201(1), 182–188.

    Article  Google Scholar 

  26. Kavoussi, N. L., Floyd, C., Abraham, A., Sui, W., Bejan, C., Capra, J. A., & Hsi, R. (2022). Machine learning models to predict 24 hour urinary abnormalities for kidney stone disease. Urology, 169, 52–57.

    Article  Google Scholar 

  27. Han, H., Mutter, W. P., & Nasser, S. (Eds.). (2019). Nutritional and medical management of kidney stones. Springer International Publishing.

    Google Scholar 

  28. Williams, J. C., Gambaro, G., Rodgers, A., Asplin, J., Bonny, O., Costa-Bauzá, A., Ferraro, P. M., Fogazzi, G., Fuster, D. G., Goldfarb, B. S., Grases, F., & Robertson, W. G. (2021). Urine and stone analysis for the investigation of the renal stone former: A consensus conference. Urolithiasis, 49(1), 1–16.

    Article  Google Scholar 

  29. Deng, Y., Yang, B. R., Luo, J. W., Du, G. X., & Luo, L. P. (2020). DTI-based radiomics signature for the detection of early diabetic kidney damage. Abdominal Radiology, 45(8), 2526–2531.

    Article  Google Scholar 

  30. Singla, R., Ringstrom, C., Hu, G., Lessoway, V., Reid, J., Nguan, C., & Rohling, R. (2022). The open kidney ultrasound data set. arXiv preprint arXiv:2206.06657.

    Google Scholar 

  31. Kuo, C. C., Chang, C. M., Liu, K. T., Lin, W. K., Chiang, H. Y., Chung, C. W., Ho, M. R., Sun, P. R., Yang, R. L., & Chen, K. T. (2019). Automation of the kidney function prediction and classification through ultrasound-based kidney imaging using deep learning. NPJ Digital Medicine, 2(1), 29.

    Article  Google Scholar 

  32. Sudharson, S., & Kokil, P. (2020). An ensemble of deep neural networks for kidney ultrasound image classification. Computer Methods and Programs in Biomedicine, 197, 105709.

    Article  Google Scholar 

  33. Verma, J., Nath, M., Tripathi, P., & Saini, K. K. (2017). Analysis and identification of kidney stone using K th nearest neighbour (KNN) and support vector machine (SVM) classification techniques. Pattern Recognition and Image Analysis, 27, 574–580.

    Article  Google Scholar 

  34. Selvarani, S., & Rajendran, P. (2019). Detection of renal calculi in ultrasound image using meta-heuristic support vector machine. Journal of Medical Systems, 43(9), 300.

    Article  Google Scholar 

  35. Kokil, P., & Sudharson, S. (2019). Automatic detection of renal abnormalities by Off-the-shelf CNN features. IETE Journal of Education, 60(1), 14–23.

    Article  Google Scholar 

Download references

Acknowledgements

All the authors would like to thank both the Department of Computer Science and Engineering and the Department of Electronics and Communication Engineering, at Kalasalingam Academy of Research and Education (Deemed to be University) for permission to conduct the research and provide computational facilities in the analysis of the images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Nagaraj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagaraj, P., Muneeswaran, V., Jeyanathan, J.S., Panda, B., Bhoi, A.K. (2023). Optimized TSA ResNet Architecture with TSH—Discriminatory Features for Kidney Stone Classification from QUS Images. In: Barsocchi, P., Parvathaneni, N.S., Garg, A., Bhoi, A.K., Palumbo, F. (eds) Enabling Person-Centric Healthcare Using Ambient Assistive Technology. Studies in Computational Intelligence, vol 1108. Springer, Cham. https://doi.org/10.1007/978-3-031-38281-9_10

Download citation

Publish with us

Policies and ethics