Skip to main content

A Review of Computational Load-Balancing for Mobile Edge Computing

  • Conference paper
  • First Online:
Intelligent Computing (SAI 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 711))

Included in the following conference series:

  • 658 Accesses

Abstract

Living and working smarter is becoming the new trend, and this is primarily made possible by the growth in the number of connected internet of things (IoT) devices globally. IoT’s foremost challenges include energy challenges and their inability to meet the latency demands of user applications. These are somewhat connected to their over-dependence on cloud services for data processing. In recent years, edge computing variants have been considered for a shift from IoT applications’ dependence on traditional cloud for data processing. However, the compute resources of individual edge devices are woefully inadequate. Hence, the need for efficient offloading strategies and resource allocation algorithms that will distribute and balance computational tasks among several collaborating edge servers/devices. Different algorithms, including Heuristic algorithms, Machine Learning techniques, Bio-inspired and Genetic algorithms and Game theory-based approaches, have been studied by researchers towards optimizing computational load balancing in edge computing solutions. This paper systematically reviews the adaptation of Mobile Edge Computing for latency improvement in IoT applications with a specific focus on state-of-the-art computational load balancing and offloading strategies. The paper further outlines future research directions and open issues that researchers can explore to find solutions to the latency gap in using Mobile Edge Computing for IoT data processing.

H. Nunoo-Mensah and K. Osei Boateng—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Madakam, S., Lake, V., Lake, V., Lake, V., et al.: Internet of things (IoT): a literature review. J. Comput. Commun. 3(05), 164 (2015)

    Article  Google Scholar 

  2. Penã-Ĺopez, I., et al.: ITU internet report 2005: the Internet of Things (2005)

    Google Scholar 

  3. Kumar, S., Tiwari, P., Zymbler, M.: Internet of things is a revolutionary approach for future technology enhancement: a review. J. Big data 6(1), 1–21 (2019)

    Article  Google Scholar 

  4. Huyghue, B.D.: Cybersecurity, internet of things, and risk management for businesses. PhD thesis, Utica College (2021)

    Google Scholar 

  5. Kott, A., Linkov, I. (eds.): Cyber Resilience of Systems and Networks. RSD, Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77492-3

    Book  Google Scholar 

  6. Index, C.G.C., Index, C.: Forecast and methodology, 2016–2021; white paper; cisco systems. Inc.: San Jose, CA, USA (2017)

    Google Scholar 

  7. Hribar, J., DaSilva, L.: Utilising correlated information to improve the sustainability of internet of things devices. In: 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), pp. 805– 808. IEEE (2019)

    Google Scholar 

  8. Arjun, N., Ashwin, S., Polachan, K., Prabhakar, T., Singh, C.: An end to end tactile cyber physical system design. In: 2018 4th International Workshop on Emerging Ideas and Trends in the Engineering of CyberPhysical Systems (EITEC), pp. 9–16. IEEE (2018)

    Google Scholar 

  9. Parvez, I., Rahmati, A., Guvenc, I., Sarwat, A.I., Dai, H.: A survey on low latency towards 5g: Ran, core network and caching solutions. IEEE Commun. Surv. Tutorials 20(4), 3098–3130 (2018)

    Article  Google Scholar 

  10. Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of things for smart cities. IEEE Internet Things J. 1(1), 22–32 (2014)

    Article  Google Scholar 

  11. Mebrek, A., Merghem-Boulahia, L., Esseghir, M.: Efficient green solution for a balanced energy consumption and delay in the IoT-fog-cloud computing. In: 2017 IEEE 16th International Symposium on Network Computing and Applications (NCA), pp. 1–4. IEEE (2017)

    Google Scholar 

  12. Rabayà, A., Schleicher, E., Graffi, K.: Fog computing with p2p: Enhancing fog computing bandwidth for IoT scenarios. In: 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 82–89 . IEEE (2019)

    Google Scholar 

  13. Hou, L., Zheng, K., Liu, Z., Xu, X., Wu, T.: Design and prototype implementation of a blockchain-enabled lora system with edge computing. IEEE Internet Things J. 8(4), 2419–2430 (2020)

    Article  Google Scholar 

  14. Pace, P., Aloi, G., Gravina, R., Caliciuri, G., Fortino, G., Liotta, A.: An edge-based architecture to support efficient applications for healthcare industry 4.0. IEEE Trans. Ind. Inf. 15(1), 481–489 (2018)

    Google Scholar 

  15. Zhang, T., Fang, X., Liu, Y., Nallanathan, A.: Content-centric mobile edge caching. IEEE. Access 8, 11722–11731 (2019)

    Article  Google Scholar 

  16. Lee, Y., Kim, W., Moon, K., Lim, K.: A mobile edge computing device to support data collecting and processing from IoT. In: 2019 International Conference on Electronics, Information, and Communication (ICEIC), pp. 1–3. IEEE (2019)

    Google Scholar 

  17. Samie, F., Bauer, L., Henkel, J.: From cloud down to things: an overview of machine learning in internet of things. IEEE Internet Things J. 6(3), 4921–4934 (2019)

    Article  Google Scholar 

  18. Mahmud, M.A., Bates, K., Wood, T., Abdelgawad, A., Yelamarthi, K.: A complete internet of things (IoT) platform for structural health monitoring (shm). In: 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), pp. 275–279. IEEE (2018)

    Google Scholar 

  19. Abbas, N., Zhang, Y., Taherkordi, A., Skeie, T.: Mobile edge computing: a survey. IEEE Internet Things J. 5(1), 450–465 (2017)

    Article  Google Scholar 

  20. Xu, X., Zhang, X., Gao, H., Xue, Y., Qi, L., Dou, W.: Become: blockchainenabled computation offloading for iot in mobile edge computing. IEEE Trans. Industr. Inf. 16(6), 4187–4195 (2019)

    Article  Google Scholar 

  21. Pydi, H., Iyer, G.N.: Analytical review and study on load balancing in edge computing platform. In: 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC), pp. 180–187. IEEE (2020)

    Google Scholar 

  22. El-Sayed, H., et al.: Edge of things: The big picture on the integration of edge, IoT and the cloud in a distributed computing environment. IEEE Access 6, 1706–1717 (2017)

    Google Scholar 

  23. Talaat, F.M., Saraya, M.S., Saleh, A.I., Ali, H.A., Ali, S.H.: A load balancing and optimization strategy (LBOS) using reinforcement learning in fog computing environment. J. Ambient. Intell. Humaniz. Comput. 11(11), 4951–4966 (2020). https://doi.org/10.1007/s12652-020-01768-8

    Article  Google Scholar 

  24. Zhang, N., Guo, S., Dong, Y., Liu, D.: Joint task offloading and data caching in mobile edge computing networks, Comput. Netw. 182, 104476 2020. https://doi.org/10.1016/j.comnet.2020.107446

  25. Hoffman, K.L.: Combinatorial optimization: current successes and directions for the future. J. Comput. Appl. Math. 124(1–2), 341–360 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ning, Z., Dong, P., Kong, X., Xia, F.: A cooperative partial computation offloading scheme for mobile edge computing enabled internet of things. IEEE Internet Things J. 6(3), 4804–4814 (2018)

    Article  Google Scholar 

  27. Tang, H., Wu, H., Zhao, Y., Li, R.: Joint computation offloading and resource allocation under task-overflowed situations in mobile edge computing. IEEE Trans. Netw. Service Manag. 19, 1539–1553 (2021)

    Google Scholar 

  28. Shakarami, A., Ghobaei-Arani, M., Shahidinejad, A.: A survey on the computation offloading approaches in mobile edge computing: a machine learning-based perspective. Comput. Netw. 182, 107496 (2020). https://doi.org/10.1016/j.comnet.2020.107496

  29. Maia, A.M., Ghamri-Doudane, Y., Vieira, D., de Castro, M.F.: An improved multi-objective genetic algorithm with heuristic initialization for service placement and load distribution in edge computing. Comput. Netw. 194, 108146 (2021). https://doi.org/10.1016/j.comnet.2021.108146

  30. Huang, J., Wang, M., Wu, Y., Chen, Y., Shen, X.: Distributed offloading in overlapping areas of mobile edge computing for internet of things. IEEE Internet of Things J. 9, 13837–13847 (2022)

    Google Scholar 

  31. Tu, Q., Li, H., Wang, X., Chen, C.: Ant colony optimization for the design of small-scale irrigation systems. Water Resour. Manage 29(7), 2323–2339 (2015)

    Article  Google Scholar 

  32. Zhang, J., Kang, M., Li, X., Liu, G.-y.: Bio-inspired genetic algorithms with formalized crossover operators for robotic applications. Front. Neurorobotics 11, 56 (2017)

    Google Scholar 

  33. Willis, M.-J., Hiden, H.G., Marenbach, P., McKay, B., Montague, G.A.: Genetic programming: an introduction and survey of applications. In: Second International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications, pp. 314–319 . IET (1997)

    Google Scholar 

  34. Georgioudakis, M., Plevris, V.: A comparative study of differential evolution variants in constrained structural optimization. Front. Built Environ. 6, 102 (2020)

    Article  Google Scholar 

  35. Ab Wahab, M.N., Nefti-Meziani, S., Atyabi, A.: A comprehensive review of swarm optimization algorithms. PLoS ONE 10(5), 0122827 (2015)

    Article  Google Scholar 

  36. Misaghi, M., Yaghoobi, M.: Improved invasive weed optimization algorithm (iwo) based on chaos theory for optimal design of pid controller. J. Comput. Des. Eng. 6(3), 284–295 (2019)

    Google Scholar 

  37. Li, L.-l., Wang, J.-k.: Sar image ship detection based on ant colony optimization. In: 2012 5th International Congress on Image and Signal Processing, pp. 1100–1103. IEEE (2012)

    Google Scholar 

  38. Dale, S.: Heuristics and biases: the science of decision-making. Bus. Inf. Rev. 32(2), 93–99 (2015)

    Google Scholar 

  39. Ozlü, ï.A., Baimakhanov, O., Saukhimov, A., Ceylan, O.: A heuristic˙ methods-based power distribution system optimization toolbox. Algorithms 15(1), 14 (2021)

    Google Scholar 

  40. Müller, F.M., Bonilha, I.S.: Hyper-heuristic based on aco and local search for dynamic optimization problems. Algorithms 15(1), 9 (2021)

    Google Scholar 

  41. Dahrouj, H., et al.: An overview of machine learning-based techniques for solving optimization problems in communications and signal processing. IEEE Access 9, 74908–74938 (2021)

    Google Scholar 

  42. Chen, L., Zhou, S., Xu, J.: Computation peer offloading for energyconstrained mobile edge computing in small-cell networks. IEEE/ACM Trans. Netw. 26(4), 1619–1632 (2018)

    Article  Google Scholar 

  43. Pertovt, E., Javornik, T., Mohorčič, M.: Game theory application for performance optimisation in wireless networks. Elektrotehniški Vestnik 78(5), 287–292 (2011)

    Google Scholar 

  44. Niu, X., et al.: Workload allocation mechanism for minimum service delay in edge computing-based power internet of things. IEEE Access 7, 83771–83784 (2019)

    Article  Google Scholar 

  45. Chen, X., Li, X.: An energy-efficient task offloading decision in electric power IoT based on edge computing. In: 2021 International Conference on Electronic Information Engineering and Computer Science (EIECS), pp. 597–600. IEEE (2021)

    Google Scholar 

  46. Fan, Q., Ansari, N.: Application aware workload allocation for edge computing-based iot. IEEE Internet Things J. 5(3), 2146–2153 (2018)

    Article  Google Scholar 

  47. Jia, M., Cao, J., Liang, W.: Optimal cloudlet placement and user to cloudlet allocation in wireless metropolitan area networks. IEEE Trans. Cloud Comput. 5(4), 725–737 (2015)

    Article  Google Scholar 

  48. Yang, L., Cao, J., Liang, G., Han, X.: Cost aware service placement and load dispatching in mobile cloud systems. IEEE Trans. Comput. 65(5), 1440–1452 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Kim, Y., Song, C., Han, H., Jung, H., Kang, S.: Collaborative task scheduling for iot-assisted edge computing. IEEE Access 8, 216593–216606 (2020)

    Article  Google Scholar 

  50. Chen, Y., Zhang, N., Zhang, Y., Chen, X., Wu, W., Shen, X.: Energy efficient dynamic offloading in mobile edge computing for internet of things. IEEE Trans. Cloud Comput. 9(3), 1050–1060 (2019)

    Article  Google Scholar 

  51. Yue, S., et al.: Todg: Distributed task offloading with delay guarantees for edge computing. IEEE Trans. Parallel Distrib. Syst. 33(7), 1650–1665 (2021)

    Article  Google Scholar 

  52. Dautov, R., Distefano, S.: Automating iot data-intensive application allocation in clustered edge computing. IEEE Trans. Knowl. Data Eng. 33(1), 55–69 (2019)

    Article  Google Scholar 

  53. Qian, Y., et al.: A workflow-aided internet of things paradigm with intelligent edge computing. IEEE Netw. 34(6), 92–99 (2020)

    Article  Google Scholar 

  54. Sakir, R.K.A., Ramli, M.R., Lee, J.-M., Kim, D.-S.: Uav-assisted real-time data processing using deep q-network for industrial internet of things. In: 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), pp. 208–211. IEEE (2020)

    Google Scholar 

  55. Wang, Z., Xue, G., Qian, S., Li, M.: Campedge: Distributed computation offloading strategy under large-scale ap-based edge computing system for IoT applications. IEEE Internet Things J. 8(8), 6733–6745 (2020)

    Article  Google Scholar 

  56. Lei, L., Xu, H., Xiong, X., Zheng, K., Xiang, W., Wang, X.: Multiuser resource control with deep reinforcement learning in IoT edge computing. IEEE Internet Things J. 6(6), 10119–10133 (2019)

    Article  Google Scholar 

  57. Ale, L., Zhang, N., Fang, X., Chen, X., Wu, S., Li, L.: Delay-aware and energy-efficient computation offloading in mobile-edge computing using deep reinforcement learning. IEEE Trans. Cogn. Commun. Netw. 7(3), 881–892 (2021)

    Article  Google Scholar 

  58. Do-Duy, T., Van Huynh, D., Dobre, O.A., Canberk, B., Duong, T.Q.: Digital twin-aided intelligent offloading with edge selection in mobile edge computing. IEEE Wireless Commun. Lett. 11, 806–810 (2022)

    Google Scholar 

  59. Cicconetti, C., Conti, M., Passarella, A.: Uncoordinated access to serverless computing in MEC systems for IoT. Comput. Netw. 172, 107184 (2020). https://doi.org/10.1016/j.comnet.2020.107184

  60. Shakarami, A., Shahidinejad, A., Ghobaei-Arani M.: An autonomous computation offloading strategy in mobile edge computing: a deep learning-based hybrid approach. J. Netw. Comput. Appl.178, 102974 (2021). https://doi.org/10.1016/j.jnca.2021.102974

  61. Zhang, J., Guo, H., Liu, J., Zhang, Y.: Task offloading in vehicular edge computing networks: A load-balancing solution. IEEE Trans. Vehicular Technol. 69(2), 2092–2104 (201)

    Google Scholar 

  62. Zhang, P., Zhu, D., Luan, J.: An approximation algorithm for the generalized k-multicut problem. Discret. Appl. Math. 160(7–8), 1240–1247 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  63. Kovalyov, Y.M.: A rounding technique to construct approximation algorithms for knapsack and partition-type problems (1996)

    Google Scholar 

  64. Nezami, Z., Zamanifar, K., Djemame, K., Pournaras, E.: Decentralized edge-to-cloud load balancing: Service placement for the internet of things. IEEE Access 9, 64983–65000 (2021)

    Article  Google Scholar 

  65. Feng, M., Krunz, M., Zhang, W.: Task partitioning and user association for latency minimization in mobile edge computing networks. InIEEE INFOCOM 2021-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 1–6 (2021). IEEE

    Google Scholar 

  66. Zhang, W.-Z., et al.: Secure and optimized load balancing for multitier IoT and edge-cloud computing systems. IEEE Internet Things J. 8(10), 8119–8132 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Wilson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wilson, M., Nunoo-Mensah, H., Boateng, K.O. (2023). A Review of Computational Load-Balancing for Mobile Edge Computing. In: Arai, K. (eds) Intelligent Computing. SAI 2023. Lecture Notes in Networks and Systems, vol 711. Springer, Cham. https://doi.org/10.1007/978-3-031-37717-4_7

Download citation

Publish with us

Policies and ethics