Skip to main content

Managing Expectations of Energy and Technology Transitions: The Role of Observation in Stability and Instability

  • Conference paper
  • First Online:
Intelligent Computing (SAI 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 711))

Included in the following conference series:

  • 631 Accesses

Abstract

Research and policy on the topics of innovations, technological change, or sustainability often reference stability and instability in relation to shifts between states. These shifts are known as diffusions or transitions, depending on their scale, but attention is not typically paid in equal measure to both the stability and instability. The details needed to define the stable states are often missing or inadequate, reflecting either a misunderstanding of what stability is or an assumption that stability is a default state. Such misunderstandings or assumptions could have serious consequences for how any efforts to understand or manage diffusions, transitions, instability or stability. This paper begins by exploring the details needed to contextualise an observation of stability and contrasts this with the level of detail given to descriptions of stability in past research on diffusions and transitions. The paper then introduces an experiment in which an agent-based model experiences a simulated diffusion in which relative stability is closely observed before, during and after the diffusion. Observed model behaviour is significantly different than theoretical expectations, demonstrates how misunderstandings or assumptions about stability could be contributing to poor management of diffusions, transitions and other socio-technical changes. Improving the management of such changes is especially important for researchers and policy-makers relying on diffusions or transitions as a means of achieving sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Biraben, J.N.: An essay concerning mankind’s demographic evolution. J. Hum. Evol. 9(8), 655–663 (1980)

    Article  Google Scholar 

  2. Brundtland, G., et al.: Our common future, volume 383. World Commission on Environment and Development in Ginebra (Suiza), Oxford University Press, Oxford (1987)

    Google Scholar 

  3. Chappin, É.J.L.: Simulating Energy Transitions. Ph.D. thesis, TU Delft (2011)

    Google Scholar 

  4. Charmed88 and NikNaks93. The Demographic Transition Model, Including Stage 5 (2009)

    Google Scholar 

  5. Cohen, E.: Theoretical foundations of industrial policy. EIB Papers 11(1), 84–106 (2006)

    Google Scholar 

  6. Davis, K.: The world demographic transition. Ann. Am. Acad. Pol. Soc. Sci. 237, 1–11 (1945)

    Article  Google Scholar 

  7. Deutsch, L.P.: DEFLATE compressed data format specification version 1.3 (1996)

    Google Scholar 

  8. Fiksel, J.: Ustainability and resilience: toward a systems approach. Sustain. Sci. Pract. Policy 2(2), 2006 (2006)

    Google Scholar 

  9. Redacted for Anonymity and Redacted for Anonymity. Model code and documentation (2013)

    Google Scholar 

  10. Geels, F.W.: Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study. Res. Policy 31(8), 1257–1274 (2002)

    Article  Google Scholar 

  11. Geels, F.W.: The dynamics of transitions in socio-technical systems: a multi-level analysis of the transition pathway from horse-drawn carriages to automobiles (1860–1930). Technol. Anal. Strateg. Manag. 17(4), 445–476 (2005)

    Article  Google Scholar 

  12. Geels, F.W., Kemp, R.: Dynamics in socio-technical systems: typology of change processes and contrasting case studies. Technol. Soc. 29(4), 441–455 (2007)

    Article  Google Scholar 

  13. Geels, F.W., Schot, J.: Typology of sociotechnical transition pathways. Res. Policy 36(3), 399–417 (2007)

    Article  Google Scholar 

  14. Geels, F.W., Schot, J.: The dynamics of transitions: a socio-technical perspective. In: Rotmans, J., Grin, J., Schot, J. (eds.) Transitions to Sustainable Development. New Directions in the Study of Long Term Transformative Change, pp. 9–101. Routledge, New York (2010)

    Google Scholar 

  15. Grin, J., Rotmans, J., Schot, J.: Transitions to Sustainable Development: New Directions in the Study of Long Term Transformative Change. Routledge, London (2010)

    Google Scholar 

  16. Hansson, S.O.V.E., Helgesson, G.: What is stability? Synthese 136(2), 219–235 (2003)

    Google Scholar 

  17. Harrison, G.W.: Stability under environmental stress: resistance, resilience, persistence, and variability. Am. Nat. 113(5), 659–669 (1979)

    Article  MathSciNet  Google Scholar 

  18. Hernes, T.: Understanding Organization as Process. Routledge, New York (2008)

    Google Scholar 

  19. Holling, C.S.: Theories for sustainable futures. Conserv. Ecol. (11955449) 4(2), 7 (2000)

    Google Scholar 

  20. Holling, C.S.: Understanding the complexity of economic, ecological, and social systems. Ecosystems 4(5), 390–405 (2001)

    Article  MathSciNet  Google Scholar 

  21. De Jong, M., Joss, S., Schraven, D., Zhan, C., Weijnen, M.: Sustainable-smart-resilient-low carbon-eco-knowledge cities; Making sense of a multitude of concepts promoting sustainable urbanization. J. Clean. Prod. 109, 1–14 (2015)

    Google Scholar 

  22. Justus, J.: Ecological and Lyapunov stability*. Philos. Sci. 75(4), 421–436 (2008)

    Article  MathSciNet  Google Scholar 

  23. Kasmire, J.: On the potential to manage a transition to sustainability in the Westland. Ph.D. thesis, TU Delft (2015)

    Google Scholar 

  24. Kasmire, J., Dijkema, G.P.J., Nikolic, I.: Diffusion: key to horticulture innovation systems. In: CESUN 2012: 3rd International Engineering Systems Symposium, Delft University of Technology, The Netherlands, 18–20 June 2012, vol. 1959 (2012)

    Google Scholar 

  25. Kauffman, S.A.: Investigations. Oxford University Press, Oxford (2002)

    Google Scholar 

  26. Kay, J.J.: A nonequilibrium thermodynamic framework for discussing ecosystem integrity. Environ. Manag. 15(4), 483–495 (1991)

    Article  Google Scholar 

  27. Keinan, A., Clark, A.G.: Recent explosive human population growth has resulted in an excess of rare genetic variants. Science 336(6082), 740–743 (2012)

    Google Scholar 

  28. Kim, S.: Sustainability vs. Resilience: Don’t Give Up Yet | The Huffington Post (2013)

    Google Scholar 

  29. Kirk, D.: Demographic transition theory. Popul. Stud. 50(3), 361–387 (1996)

    Article  Google Scholar 

  30. Krohn, W., Kuppers, G., Nowotny, H.: Selforganization: Portrait of a Scientific Revolution. Springer, Dordrecht (1990). https://doi.org/10.1007/978-94-017-2975-8

  31. Langley, A., Montréal, H., Smallman, C., Van De Ven, A.H., Tsoukas, H., Van De Ven, A.H.: Process studies of change in organization and management: unveiling temporality, activity and flow. Acad. Manag. J. 56(1), 1–13 (2013)

    Article  Google Scholar 

  32. Larsen, J.B.: Ecological stability of forests and sustainable silviculture. Forest Ecol. Manag. 73(1–3), 85–96 (1995)

    Google Scholar 

  33. Levin, S.A., Lubchenco, J.: Marine ecosystem-based management. BioScience 58(1), 1–7 (2008)

    Google Scholar 

  34. Loorbach, D., Rotmans, J.: Managing transitions for sustainable development. In: Olsthoorn, X., Wieczorek, A. (eds.) Understanding Industrial Transformation, vol. 44, pp. 187–206. Springer, Dordrecht (2006). https://doi.org/10.1007/1-4020-4418-6_10

  35. Lorenz, E.N.: The problem of deducing the climate from the governing equations. Tellus 16(1), 1–11 (1964)

    Google Scholar 

  36. Meadows, D.H., Randers, J., Meadows, D.L.: Limits to Growth: Limits to Growth. Chelsea Green (2004)

    Google Scholar 

  37. Michaelian, K.: Thermodynamic stability of ecosystems. J. Theor. Biol. 237(3), 323–335 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Nicolis, G.: Self-organization in nonequilibrium systems. In: Dissipative Structures to Order through Fluctuations, pp. 339–426 (1977)

    Google Scholar 

  39. Nikolic, I.: Co-evolutionary method for modelling large scale socio-technical systems evolution. NGInfra/TU Delft (2009)

    Google Scholar 

  40. Nikolic, I., Kasmire, J.: Theory. In: van Dam, K.H., Nikolic, I., Lukszo, Z. (eds.) Agent-Based Modelling of Socio-Technical Systems, vol. 9, pp. 11–71. Springer, Dordrecht (2012). https://doi.org/10.1007/978-94-007-4933-7_2

  41. Notestein, F.W.: Population: The Long View. University of Chicago Press, Chicago (1945)

    Google Scholar 

  42. O’Loughlin, J., et al.: The diffusion of democracy, 1946–1994. Ann. Assoc. Am. Geograph. 88(4), 545–574 (1998)

    Google Scholar 

  43. Perrings, C.: Resilience and sustainable development. Environ. Dev. Econ. 2013(January 28), 417–427 (2006)

    Google Scholar 

  44. Prigogine, I., Stengers, I.: Order Out of Chaos: Man’s New Dialogue with Nature. Flamingo, London (1984)

    Google Scholar 

  45. Rittel, H.W.J., Webber, M.M.: Dilemmas in a general theory of planning. Policy Sci. 4(2), 155–169 (1973)

    Google Scholar 

  46. Rogers, E.M.: Diffusion of Innovations. Free Pr (1995)

    Google Scholar 

  47. Rogers, E.M., Medina, U.E., Rivera, M.A., Wiley, C.J.: Complex adaptive systems and the diffusion of innovations. Innov. J. Publ. Sect. Innov. J. 10(3), 1–25 (2005)

    Google Scholar 

  48. Rogers, M.: The definition and measurement of innovation. Melbourne Institute of Applied Economic and Social Research Parkville, VIC (1998)

    Google Scholar 

  49. Rotmans, J., Loorbach, D.: Complexity and transition management. J. Ind. Ecol. 13(2), 184–196 (2009)

    Article  Google Scholar 

  50. Rotmans, J., Loorbach, D.A.: Towards a better understanding of transitions and their governance. A systemic and reflexive approach. In: Grin, J., Rotmans, J., Schot, J. (eds.) Transitions to Sustainable Development. New Directions in the Study of Long Term Transformative Change, pp. 105–220. Routledge, New York (2010)

    Google Scholar 

  51. Ryan, A.J.: What is a Systems Approach? (2008)

    Google Scholar 

  52. Schneider, E.D., Kay, J.J.: Order from disorder: the thermodynamics of complexity in biology. Reflect. Future Biol. 8, 161–172 (1995)

    Google Scholar 

  53. Schürmann, T., Grassberger, P.: Entropy estimation of symbol sequences. Chaos: Interdisc. J. Nonlinear Sci. 6(3), 414–427 (1996)

    Google Scholar 

  54. Schürmann, T.: Bias analysis in entropy estimation. J. Phys. A Math. General 37(27), L295–L301 (2004)

    Google Scholar 

  55. Smith, A., Stirling, A.: The politics of social-ecological resilience and sustainable socio-technical transitions. Ecol. Soc. 15(1), 11 (2010)

    Article  Google Scholar 

  56. Suarez, F.F., Oliva, R.: Environmental change and organizational transformation. Ind. Corp. Chang. 14(6), 1017–1041 (2005)

    Article  Google Scholar 

  57. Szreter, S.: The idea of demographic transition and the study of fertility change: a critical intellectual history. Population (Engl. Ed.) 19(4), 659–701 (1993)

    Google Scholar 

  58. van der Brugge, R., Rotmans, J., Loorbach, D.A.: The transition in Dutch water management. Region. Environ. Change 5(4), 164–176 (2005)

    Google Scholar 

  59. Reinier, A.C., Van der Veen, C., Kasmire, J.: Combined heat and power in Dutch greenhouses: a case study of technology diffusion. Energy Policy 87, 8–16 (2015)

    Google Scholar 

  60. Walker, B.H., Holling, C.S., Carpenter, S.R., Kinzig, A.P.: Resilience, adaptability and transformability in social - ecological systems. Ecol. Soc. 9(2), 5 (2004)

    Google Scholar 

  61. Zolli, A., Healy, A.M.: Resilience: Why Things Bounce Back. Simon and Schuster, New York (2012)

    Google Scholar 

Download references

Acknowledgments

This research was made possible through funding from Greenport Duurzaam project with support from the European Regional Development Fund of the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kasmire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kasmire, J. (2023). Managing Expectations of Energy and Technology Transitions: The Role of Observation in Stability and Instability. In: Arai, K. (eds) Intelligent Computing. SAI 2023. Lecture Notes in Networks and Systems, vol 711. Springer, Cham. https://doi.org/10.1007/978-3-031-37717-4_31

Download citation

Publish with us

Policies and ethics