Skip to main content

Lyapunov-Based Consistent Discretization of Quasi-continuous High-Order Sliding Modes

  • Chapter
  • First Online:
Sliding-Mode Control and Variable-Structure Systems

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 490))

  • 443 Accesses

Abstract

In this chapter, we propose an explicit discretization scheme for class of disturbed systems controlled by homogeneous quasi-continuous high-order sliding-mode controllers which are equipped with a homogeneous Lyapunov function. Such a Lyapunov function is used to construct the discretization scheme that preserves important features from the original continuous-time system: asymptotic stability, finite-time convergence, and the Lyapunov function itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Some parts of Lemma 2, Theorem 3, Theorem 5, and their proofs have been reproduced with permission from [Sanchez T, Polyakov A, Efimov D. Lyapunov-based consistent discretization of stable homogeneous systems. Int J Robust Nonlinear Control. 2021;31:3587–3605. https://doi.org/10.1002/rnc.5308] ©2020 John Wiley & Sons Ltd., and with permission from the IFAC License Agreement IFAC 2020#1150 of [T. Sanchez, A. Polyakov, D. Efimov, A Consistent Discretisation method for Stable Homogeneous Systems based on Lyapunov Function, IFAC-PapersOnLine 53(2), 5099–5104 (2020). DOI https://doi.org/10.1016/j.ifacol.2020.12.1141.].

  2. 2.

    Under the assumption of \(d\in \mathscr {D}\), it can be seen that the right-hand side of (6) is locally Lipschitz in x on \(\mathbb {R}^n\setminus \{0\}\).

  3. 3.

    Following [3], we use the term strong stability (which involves all the solutions) in Theorem 2 to contrast with the term of weak stability, which claims properties of some solutions [10].

  4. 4.

    This equation is known as Euler’s theorem for weighted homogeneous functions, see, e.g., [2, Proposition 5.4].

  5. 5.

    In this chapter, we mean by numerical solution a sequence \(\{z_k\}_{k\in \mathbb {Z}_{+}}\) such that \(z_0=z(0)\), and for some \(h\in \mathbb {R}_{+}^*\), \(z_k\) approximates z(kh).

  6. 6.

    The global truncation error can be understood as the accumulation of the errors generated at each step in a given compact interval [0, a] , see, e.g., [20] or [14, p. 159].

  7. 7.

    The local truncation error is the one-step error computed by assuming that \(E(t)=0\), i.e., \(x(t)=x_k\).

  8. 8.

    Since \([a_1,a_2]\subset \mathbb {R}\) is compact and \(a_1>0\), the function \(g:[a_1,a_2]\subset \mathbb {R}_{+}^* \rightarrow \mathbb {R}\) given by \(g(V)=V^{\frac{r_i}{m}}\) is Lipschitz continuous. Also, \(z_k\) and z belong to a compact subset of \(\mathbb {R}^n\) on which V is Lipschitz continuous.

References

  1. Acary, V., Brogliato, B., Orlov, Y.V.: Chattering-free digital sliding-mode control with state observer and disturbance rejection. IEEE Trans. Autom. Control 57(5), 1087–1101 (2012). https://doi.org/10.1109/TAC.2011.2174676

    Article  MathSciNet  MATH  Google Scholar 

  2. Bacciotti, A., Rosier, L.: Liapunov Functions and Stability in Control Theory, 2nd edn. Communications and Control Engineering. Springer, Berlin (2005). https://doi.org/10.1007/b139028

  3. Bernuau, E., Efimov, D., Perruquetti, W., Polyakov, A.: On homogeneity and its application in sliding mode control. J. Frankl. Inst. 351(4), 1866–1901 (2014). https://doi.org/10.1016/j.jfranklin.2014.01.007

    Article  MathSciNet  MATH  Google Scholar 

  4. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004). https://doi.org/10.1017/CBO9780511804441

  5. Brogliato, B., Polyakov, A., Efimov, D.: The implicit discretization of the supertwisting sliding-mode control algorithm. IEEE Trans. Autom. Control 65(8), 3707–3713 (2020). https://doi.org/10.1109/TAC.2019.2953091

    Article  MathSciNet  MATH  Google Scholar 

  6. Crouzeix, J.P., Ferland, J.A.: Criteria for quasi-convexity and pseudo-convexity: relationships and comparisons. Math. Program. 23(1) (1982). https://doi.org/10.1007/BF01583788

  7. Cruz-Zavala, E., Moreno, J.A.: Homogeneous high order sliding mode design: a Lyapunov approach. Automatica 80, 232–238 (2017). https://doi.org/10.1016/j.automatica.2017.02.039

    Article  MathSciNet  MATH  Google Scholar 

  8. Drakunov, S.V., Utkin, V.I.: On discrete-time sliding modes. IFAC Proc. Vol. 22(3), 273–278 (1989). https://doi.org/10.1016/S1474-6670(17)53647-2

    Article  Google Scholar 

  9. Efimov, D., Polyakov, A., Levant, A., Perruquetti, W.: Realization and discretization of asymptotically stable homogeneous systems. IEEE Trans. Autom. Control 62(11), 5962–5969 (2017). https://doi.org/10.1109/TAC.2017.2699284

    Article  MathSciNet  MATH  Google Scholar 

  10. Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Kluwer, Dordrecht, The Netherlands (1988). https://doi.org/10.1007/978-94-015-7793-9

  11. Goodwin, G.C., Agüero, J.C., Garrido, M.E.C., Salgado, M.E., Yuz, J.I.: Sampling and sampled-data models: the interface between the continuous world and digital algorithms. IEEE Control Syst. Mag. 33(5), 34–53 (2013). https://doi.org/10.1109/MCS.2013.2270403

    Article  MathSciNet  MATH  Google Scholar 

  12. Grimm, V., Quispel, G.R.W.: Geometric integration methods that preserve Lyapunov functions. BIT Numer. Math. 45(4), 709–723 (2005). https://doi.org/10.1007/s10543-005-0034-z

    Article  MathSciNet  MATH  Google Scholar 

  13. Haimo, V.T.: Finite time controllers. SIAM J. Control Optim. 24(4), 760–770 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, 2nd edn. Springer, Berlin, Heidelberg (1993). https://doi.org/10.1007/978-3-540-78862-1

  15. Hong, Y., Huang, J., Xu, Y.: On an output feedback finite-time stabilisation problem. In: Proceedings of the 38th IEEE Conference on Decision and Control, vol. 2, pp. 1302–1307 (1999). https://doi.org/10.1109/CDC.1999.830117

  16. Huber, O., Acary, V., Brogliato, B.: Lyapunov stability and performance analysis of the implicit discrete sliding mode control. IEEE Trans. Autom. Control 61(10), 3016–3030 (2016). https://doi.org/10.1109/TAC.2015.2506991

    Article  MathSciNet  MATH  Google Scholar 

  17. Kawski, M.: Stability and nilpotent approximations. In: Proceedings of the 27th IEEE Conference on Decision and Control, vol. 2, pp. 1244–1248 (1988). https://doi.org/10.1109/CDC.1988.194520

  18. Koch, S., Reichhartinger, M.: Discrete-time equivalents of the super-twisting algorithm. Automatica 107, 190–199 (2019). https://doi.org/10.1016/j.automatica.2019.05.040, http://www.sciencedirect.com/science/article/pii/S0005109819302596

  19. Koch, S., Reichhartinger, M., Horn, M., Fridman, L.: Discrete-time implementation of homogeneous differentiators. IEEE Trans. Autom. Control 65(2), 757–762 (2020). https://doi.org/10.1109/TAC.2019.2919237

    Article  MathSciNet  MATH  Google Scholar 

  20. Lambert, J.D.: Numerical Methods for Ordinary Differential Systems: The Initial Value Problem. Wiley, New York (1991)

    Google Scholar 

  21. Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76(6), 924–941 (2003). https://doi.org/10.1080/0020717031000099029

  22. Levant, A.: Homogeneity approach to high-order sliding mode design. Automatica 41(5), 823–830 (2005). https://doi.org/10.1016/j.automatica.2004.11.029

    Article  MathSciNet  MATH  Google Scholar 

  23. Levant, A.: Quasi-continuous high-order sliding-mode controllers. IEEE Trans. Autom. Control 50(11), 1812–1816 (2005). https://doi.org/10.1109/TAC.2005.858646

    Article  MathSciNet  MATH  Google Scholar 

  24. Levant, A.: On fixed and finite time stability in sliding mode control. In: 52nd IEEE Conference on Decision and Control (2013)

    Google Scholar 

  25. Mangasarian, O.L.: Nonlinear Programming. SIAM (1994)

    Google Scholar 

  26. Nakamura, H., Yamashita, Y., Nishitani, H.: Smooth Lyapunov functions for homogeneous differential inclusions. In: Proceedings of the 41st SICE Annual Conference, pp. 1974–1979 (2002). https://doi.org/10.1109/SICE.2002.1196633

  27. Nesić, D., Teel, A.R.: Perspectives in Robust Control, chap. Sampled-Data Control of Nonlinear Systems: An Overview of Recent Results. Springer, London (2001)

    Google Scholar 

  28. Polyakov, A.: Generalized Homogeneity in Systems and Control. Springer, Cham, Switzerland (2020). https://doi.org/10.1007/978-3-030-38449-4

  29. Polyakov, A., Efimov, D., Brogliato, B.: Consistent discretization of finite-time and fixed-time stable systems. SIAM J. Control Optim. 57(1), 78–103 (2019). https://doi.org/10.1137/18M1197345

    Article  MathSciNet  MATH  Google Scholar 

  30. Polyakov, A., Fridman, L.: Stability notions and Lyapunov functions for sliding mode control systems. J. Frankl. Inst. 351(4), 1831–1865 (2014). https://doi.org/10.1016/j.jfranklin.2014.01.002

    Article  MathSciNet  MATH  Google Scholar 

  31. Rosier, L.: Homogeneous Lyapunov function for homogeneous continuous vector field. Syst. Control Lett. 19(6), 467–473 (1992). https://doi.org/10.1016/0167-6911(92)90078-7

    Article  MathSciNet  MATH  Google Scholar 

  32. Sanchez, T., Efimov, D., Polyakov, A., Moreno, J.A.: Homogeneous discrete-time approximation. IFAC-PapersOnLine 52(16), 19–24 (2019). https://doi.org/10.1016/j.ifacol.2019.11.749. 11th IFAC Symposium on Nonlinear Control Systems NOLCOS 2019

  33. Sanchez, T., Polyakov, A., Efimov, D.: A consistent discretisation method for stable homogeneous systems based on lyapunov function. IFAC-PapersOnLine 53(2), 5099–5104 (2020). https://doi.org/10.1016/j.ifacol.2020.12.1141. 21st IFAC World Congress

  34. Sanchez, T., Polyakov, A., Efimov, D.: Lyapunov-based consistent discretization of stable homogeneous systems. Int. J. Robust Nonlinear Control 31(9), 3587–3605 (2021). https://doi.org/10.1002/rnc.5308

    Article  MathSciNet  Google Scholar 

  35. Sepulchre, R., Aeyels, D.: Homogeneous Lyapunov functions and necessary conditions for stabilization. Math. Control Signals Syst. 9(1), 34–58 (1996). https://doi.org/10.1007/BF01211517

    Article  MathSciNet  MATH  Google Scholar 

  36. Utkin, V.I.: Variable Structure and Lyapunov Control, chap. Sliding mode control in discrete-time and difference systems. Springer, Berlin, Heidelberg (1994)

    Google Scholar 

  37. Walter, J.: Proof of Peano’s existence theorem without using the notion of the definite integral. J. Math. Anal. Appl. 59(3), 587–595 (1977). https://doi.org/10.1016/0022-247X(77)90083-X

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of: the project ANR DIGITSLID (ANR 18-CE40-0008); CONACYT CVU-371652.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tonametl Sanchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sanchez, T., Polyakov, A., Efimov, D. (2023). Lyapunov-Based Consistent Discretization of Quasi-continuous High-Order Sliding Modes. In: Oliveira, T.R., Fridman, L., Hsu, L. (eds) Sliding-Mode Control and Variable-Structure Systems. Studies in Systems, Decision and Control, vol 490. Springer, Cham. https://doi.org/10.1007/978-3-031-37089-2_9

Download citation

Publish with us

Policies and ethics